

NOAA Technical Memorandum OAR GSD-42

COMMUNITY HWRF USERS GUIDE V3.4A

AUGUST 2012

THE DEVELOPMENTAL TESTBED CENTER

S. Bao

R. Yablonsky

D. Stark

L. Bernardet

Earth System Research Laboratory

Global System Division

Boulder, Colorado

September 2013

NOAA Technical Memorandum OAR GSD-42

COMMUNITY HWRF USERS GUIDE V3.4A

Shaowu Bao
1

Richard Yablonsky
2

Don Stark
3

Ligia Bernardet
1

1
 Cooperative Institute for Research in Environmental Sciences (CIRES) and NOAA/ESRL/GSD

2
 University of Rhode Island

3
 National Center for Atmospheric Research

UNITED STATES
DEPARTMENT OF COMMERCE

Penny Pritzker
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Dr. Kathryn Sullivan
Acting Under Secretary for Oceans
And Atmosphere/acting Administrator

Office of Oceanic and
Atmospheric Research

Dr. Robert Detrick
Assistant Administrator

Community	 HWRF	 Users	 Guide	 V3.4a

August	 2012	

The	 Developmental	 Testbed	 Center	

Contributors	 to	 this	 Guide:	

Shaowu	 Bao,	 NOAA/ESRL/GSD	 and	 CIRES/CU
Richard	 Yablonsky,	 University	 of	 Rhode	 Island	

Don	 Stark,	 NCAR/RAL/JNT	
Ligia	 Bernardet,	 NOAA/ESRL/GSD	 and	 CIRES/CU

Please send questions to: wrfhelp@ucar.edu

Acknowledgments:	 	 The	 authors	 also	 wish	 to	 thank	 Carol	 Makowski	 of	
NCAR/RAL/JNT	 and	 John	 Osborn	 of	 NOAA/ESRL/GSD	 for	 providing edit support for
this document and addressing a number of formatting issues.

 2

Table of Contents

Chapter	 1:	 HWRF	 System	 Introduction	 ..	 6
1.1	 HWRF	 System	 Overview	 ..	 6
1.2	 HWRF	 Development	 and	 Support	 ..	 8
1.3	 HWRF	 Source	 Code	 Directory	 Structure	 ..	 8
1.4	 Input	 Data	 Directory	 Structure	 ...	 13
1.5	 Production	 Directory	 	 Structure	 ...	 15
1.6	 Scripts	 for	 Running	 HWRF	 ..	 16

Chapter	 2:	 Software	 Installation	 ..	 18
2.1	 Introduction	 ..	 18
2.2	 Obtaining	 the	 HWRF	 Source	 Code	 ..	 18
2.3	 Setting	 up	 the	 HWRF	 System	 ..	 19
2.4	 System	 Requirements,	 Libraries	 and	 Tools	 ..	 20
2.4.1	 Compilers	 ..	 21
2.4.2	 	 netCDF	 and	 MPI	 ..	 21
2.4.3	 LAPACK	 and	 BLAS	 ..	 22

2.5	 Included	 Libraries	 ...	 23
2.5.1	 Component	 Dependencies	 ..	 24

2.6	 Building	 WRF-‐NMM	 ...	 24
2.6.1	 Configuring	 WRF-‐NMM	 ..	 25
2.6.2	 Compiling	 WRF-‐NMM	 ...	 26

2.7	 Building	 HWRF-‐Utilities	 ..	 27
2.7.1	 	 Set	 Environment	 Variables	 ..	 27
2.7.2	 	 Configure	 and	 Compile	 ..	 28

2.8	 Building	 POM-‐TC	 ..	 31
2.8.1	 	 Set	 Environment	 Variables	 ..	 31
2.8.2	 Configure	 and	 Compile	 ...	 31

2.9	 Building	 GFDL	 Vortex	 Tracker	 ..	 33
2.9.1	 	 Set	 Environment	 Variables	 ..	 33
2.9.2	 	 Configure	 and	 Compile	 ..	 34

2.10	 Building	 the	 NCEP	 Coupler	 ...	 35
2.10.1	 	 Configure	 and	 Compile	 ..	 35

2.11	 Building	 WPS	 ..	 36
2.11.1	 Background	 ...	 36
2.11.2	 Configure	 and	 Compile	 ...	 37

2.12	 Building	 UPP	 ...	 38
2.12.1	 Set	 Environment	 Variables	 ..	 39
2.12.2	 Configure	 and	 Compile	 ...	 39

2.13	 Building	 GSI	 ...	 40
2.13.1	 	 Background	 ..	 40
2.13.2	 	 Configure	 and	 Compile	 ..	 41

Chapter	 3:	 HWRF	 Preprocessing	 System	 ..	 44
3.1	 	 Introduction	 ...	 44

 3

3.2	 	 How	 to	 Run	 the	 HWRF	 Preprocessing	 Using	 Scripts	 ...	 44
3.2.1	 	 	 hwrfdomain_wrapper ... 45
3.2.2	 	 	 geogrid_wrapper ... 46
3.2.3	 	 	 ungrib_wrapper ... 47
3.2.4	 	 	 metgrid_wrapper ... 47

3.3	 Executables	 ..	 49
3.3.1	 	 	 geogrid.exe ... 49
3.3.2	 	 	 ungrib.exe .. 49
3.3.3	 	 	 metgrid.exe .. 50

3.4	 Algorithm	 to	 Define	 the	 HWRF	 Domain	 Using	 the	 Storm	 Center	 Location	 	 50
3.5	 HWRF	 Domain	 Wizard	 ...	 51

Chapter	 4:	 Vortex	 Initialization	 ...	 52
4.1	 Overview	 ...	 52
4.2	 	 Domains	 Used	 in	 HWRF	 ..	 54
4.3	 	 How	 to	 Run	 the	 Vortex	 Initialization	 Using	 Scripts	 ...	 55
4.3.1	 	 real_wrapper .. 55
4.3.2	 	 wrfanalysis_wrapper .. 57
4.3.3	 	 wrfghost_wrapper .. 58
4.3.4.	 	 track_analysis_wrapper .. 59
4.3.5.	 	 relocate1_wrapper .. 60
4.3.6	 	 relocate2_wrapper ... 61
4.3.7	 	 relocate3_wrapper ... 63
4.3.8	 	 gsi_wrapper .. 64
4.3.9	 	 merge_wrapper .. 65

4.4	 	 HWRF	 Vortex	 Initialization	 Executables	 ...	 75
4.4.1	 	 copygb.exe .. 75
4.4.2	 	 diffwrf_3dvar.exe .. 75
4.4.3	 	 gettrk.exe .. 75
4.4.4	 	 gsi.exe .. 76
4.4.5	 	 hwrf_anl_4x_step2.exe .. 76
4.4.6	 	 hwrf_anl_bogus_10m.exe ... 77
4.4.7	 	 hwrf_anl_cs_10m.exe .. 77
4.4.8	 	 hwrf_create_nest_1x_10m.exe .. 78
4.4.9	 	 hwrf_create_trak_guess.exe ... 78
4.4.10	 	 hwrf_data_remv.exe ... 79
4.4.11	 	 hwrf_inter_2to1.exe .. 79
4.4.12	 	 hwrf_inter_2to2.exe .. 79
4.4.13	 	 hwrf_inter_2to6.exe .. 80
4.4.14	 	 hwrf_inter_4to2.exe .. 80
4.4.15	 	 hwrf_inter_4to6.exe .. 81
4.4.16	 	 hwrf_merge_nest_4x_step12_3n.exe .. 81
4.4.18	 	 hwrf_split1.exe ... 82
4.4.19	 	 hwrf_wrfout_newtime.exe .. 83
4.4.20	 	 ssrc.exe .. 83

Chapter	 5:	 Ocean	 Initialization	 of	 POM-‐TC	 ..	 84
5.1	 	 Introduction	 ...	 84
5.2	 	 Run	 Ocean	 Initialization	 Using	 the	 Wrapper	 Script	 ..	 84
5.3	 	 Functions	 in	 Script	 “pom_init.ksh”	 ..	 85
5.3.1	 	 	 main ... 85

 4

5.3.2	 	 	 get_tracks ... 85
5.3.3	 	 	 get_region .. 86
5.3.4	 	 	 get_sst .. 86
5.3.5	 	 	 sharpen .. 86
5.3.6	 	 	 phase_3 .. 86
5.3.7	 	 	 phase_4 .. 87

5.4	 Executables	 ..	 87
5.4.1	 	 gfdl_find_region.exe .. 87
5.4.2	 	 gfdl_getsst.exe ... 88
5.4.3	 	 gfdl_sharp_mcs_rf_l2m_rmy5.exe ... 88
5.4.4	 	 gfdl_ocean_united.exe .. 89
5.4.5	 	 gfdl_ocean_eastatl.exe .. 89
5.4.6	 	 gfdl_ocean_ext_eastatl.exe ... 90
5.4.7	 	 gfdl_ocean_eastpac.exe .. 90

Chapter	 6:	 How	 to	 Run	 HWRF	 ...	 92
6.1	 Introduction	 ..	 92
6.2	 How	 to	 Run	 HWRF	 Using	 the	 Wrapper	 Script	 hwrf_wrapper 92
6.3	 Overview	 of	 the	 Script	 ..	 93
6.4	 	 Output	 Files	 in	 the	 Directory	 ..	 94
6.5	 	 Status	 Check	 ...	 96
6.6	 	 Running	 HWRF	 with	 Alternate	 Namelist	 Options	 ..	 96
6.7	 	 Executables	 ...	 97
6.7.1	 	 wrf.exe ... 97
6.7.2	 	 hwrf_wm3c.exe ... 97
6.7.3	 	 hwrf_ocean_united.exe ... 98
6.7.4	 	 hwrf_ocean_eastatl.exe .. 99
6.7.5	 	 hwrf_ocean_eastatl_ext.exe .. 99
6.7.6	 	 hwrf_ocean_eastpac.exe ... 100
6.7.7	 	 hwrf_swcorner_dynamic.exe .. 101

6.8	 	 Sample	 HWRF	 namelist	 ...	 101

Chapter	 7:	 HWRF	 Post	 Processor	 ..	 106
7.1	 	 Introduction	 ..	 106
7.2	 	 How	 to	 Run	 UPP	 Using	 the	 Wrapper	 Script	 unipost_wrapper 106
7.3	 	 Overview	 of	 the	 UPP	 Script	 ...	 107
7.4	 	 Executables	 ..	 109
7.4.1	 	 unipost.exe .. 109
7.4.2	 	 copygb.exe .. 109

Chapter	 8:	 GFDL	 Vortex	 Tracker	 ...	 111
8.1	 Introduction	 ...	 111
8.2	 How	 to	 Run	 the	 GFDL	 Vortex	 Tracker	 Using	 the	 Wrapper	 Script	 	 112
8.3	 Overview	 of	 the	 Script	 tracker.ksh ... 112
8.4	 How	 to	 Generate	 Phase	 Space	 Diagnostics	 ..	 113
8.5	 How	 to	 Run	 the	 Tracker	 in	 Cyclogenesis	 Mode	 ..	 113
8.6	 Executables	 ...	 114
8.6.1	 	 hwrf_gettrk.exe ... 114
8.6.2	 	 hwrf_vint.exe ... 120
8.6.3	 	 hwrf_tave.exe .. 121

8.7	 How	 to	 Plot	 the	 Tracker	 Output	 Using	 ATCF_PLOT	 ...	 121

 5

Appendix	 ..	 123

 6

Chapter 1: HWRF System Introduction

1.1 HWRF System Overview

The Weather Research and Forecast (WRF) system for hurricane prediction (HWRF) is
an operational model implemented at the National Weather Service (NWS)/	 National
Centers for Environmental Prediction (NCEP) to provide numerical guidance to the
National Hurricane Center for the forecasting of tropical cyclones’ track, intensity, and
structure. HWRF v3.4a and this Users Guide match the operational 2012 implementation
of HWRF.

The HWRF model is a primitive equation non-hydrostatic coupled atmosphere-ocean
model with the atmospheric component formulated with 42 levels in the vertical. The
model uses the Non-hydrostatic Mesoscale Model (NMM) dynamic core of WRF (WRF-
NMM) with a parent and two nest domains coded in the WRF framework. The grid
projection of the model is rotated latitude-longitude with E-staggering. The parent
domain covers roughly 80o x 80o on a rotated latitude/longitude E-staggered grid. The
boundary of the domain is determined from the initial position of the storm and National
Hurricane Center (NHC) forecast 72-h position, if available. The middle nest domain of
about 11° x 10° and the inner nest domain of about 6.0° x 5.5° move along with the storm
and the nesting is two-way interactive. The stationary parent domain has a grid spacing of
0.18° (about 27 km) while the middle nest spacing is 0.06° (about 9 km) and the inner
nest spacing is 0.02° (about 3 km). The time steps for HWRF are 45, 15, and 5 s,
respectively, for the parent, middle nest, and inner nest domains. It is also possible to
configure HWRF to use only two domains, a parent grid and a single moving nest with
spacing of 27- and 9-km, respectively. Information about this configuration, which was
used in operational implementations until 2011, will be provided upon sending a request
to wrfhelp@ucar.edu.

The model physics is based primarily on the Geophysical Fluid Dynamics Laboratory
(GFDL) hurricane model, which includes a simplified Arakawa-Schubert scheme for
cumulus parameterization and a Ferrier cloud microphysics package for explicit moist
physics. The vertical diffusion scheme is based on Troen and Mahrt’s non-local scheme.
The Monin-Obukhov scheme is used for surface flux calculations with an improved air-
sea momentum flux parameterization in strong wind conditions and a one layer slab land
model. Radiation effects are evaluated by the GFDL scheme, which includes diurnal
variations and interactive effects of clouds. HWRF physics includes parameterizations of
dissipative heating.

 7

The NCEP Global Forecast System (GFS) analysis is used to generate initial conditions
for the hurricane model. This analysis is modified by removing the GFS vortex and
inserting a vortex extracted from the 6-h forecast of the HWRF model initialized 6-h
previously. This vortex is relocated and modified so that the initial storm position,
structure, and intensity conform to the NHC storm message. When the previous 6-h
forecast is not available, a bogus vortex based on theoretical considerations and HWRF
climatology is used. The analysis is then further modified using observations and a 3D-
VAR data assimilation system. The GFS forecasted fields every 6 hours are used to
provide lateral boundary conditions during each forecast.

The time integration is performed with a forward-backward scheme for fast waves, an
implicit scheme for vertically propagating sound waves and the Adams-Bashforth scheme
for horizontal advection and for the Coriolis force. In the vertical, the hybrid pressure-
sigma coordinate (Arakawa and Lamb 1977) is used. Horizontal diffusion in based on a
2nd order Smagorinsky-type following (Janjic 1990).

The Community HWRF model can only be used for the two basins for which the national
hurricane center is responsible: north Atlantic and northeast Pacific. In both basins, the
atmospheric model is coupled with the Princeton Ocean Model (POM) for Tropical
Cyclones (POM-TC). The POM was developed at Princeton University. At the
University of Rhode Island (URI), the POM was coupled to the GFDL and HWRF
models. In the eastern north Pacific, a one-dimensional (column) configuration of the
POM-TC is employed, while in the Atlantic basin, POM-TC is run in three dimensions.
In both basins the horizontal grid spacing is 1/6° (approximately 18 km). In the Atlantic,
the POM-TC is configured with 23 vertical levels, while 16 levels are used in the eastern
north Pacific.

The POM-TC is initialized by a diagnostic and prognostic spin up of the ocean
circulations using climatological ocean data. For storms located in the western part of the
Atlantic basin, the initial conditions are enhanced with real-time sea surface temperature,
sea surface height data, and the assimilation of oceanic “features”. During the ocean spin
up, realistic representations of the structure and positions of the Loop Current, Gulf
Stream, and warm- and cold-core eddies are incorporated using a features-based data
assimilation technique developed at URI.

HWRF is suitable for use in tropical applications including real-time NWP, forecast
research, physics parameterization research, air-sea coupling research and teaching. The
HWRF system support to the community by the Developmental Testbed Center (DTC)
includes the following three main modules.

• HWRF atmospheric components
• WRF-NMM V3.4a (which has tropical physics schemes and a vortex-

following moving nest)
• WRF Preprocessing System (WPS)
• Vortex initialization
• Gridpoint Statistical Interpolation (GSI)

 8

• Post-processing
• GFDL vortex tracker

• HWRF oceanic components
• POM-TC model
• Ocean initialization

 • Atmosphere-Ocean Coupler

The atmospheric and oceanic components are interactively coupled with a Message
Passing Interface (MPI)-based coupler, which was developed at NCEP’s
Environmental Modeling Center (EMC). The atmospheric and oceanic components
exchange information through the coupler; the ocean sends the sea surface
temperature (SST) to the atmosphere; the atmosphere receives the SST and sends
the surface fluxes, including sensible heat flux, latent heat flux and short-wave
radiation to the ocean, and so on. The frequency of information exchange is 9
minutes.

1.2 HWRF Development and Support

The general WRF code repository is used for the development and support of the
HWRF system. The atmospheric model used in HWRF is a configuration of the
general WRF model.

HWRF is being actively developed and advanced. In the future, more components
will be coupled into the HWRF system, including wave, hydrology, storm surge,
and inundation components.

The HWRF modeling system software is in the public domain and is freely available
for community use. Information about obtaining the codes, datasets, documentations
and tutorials can be found at http://www.dtcenter.org/HurrWRF/users and in the
following chapters of this Users Guide. Direct all questions to wrfhelp@ucar.edu.

1.3 HWRF Source Code Directory Structure

The HWRF system source code has the following eight components.

• WRF Atmospheric Model
• WPS
• Unified Post Processor (UPP)
• GSI

 9

• HWRF Utilities
• POM-TC
• GFDL Vortex Tracker
• NCEP Atmosphere-Ocean Coupler

The code for all components can be obtained by downloading the following tar files from
the DTC website (see Chapter 2).

• hwrfv3.4a_utilities.tar.gz
• hwrfv3.4a_pomtc.tar.gz
• hwrfv3.4a_gfdl_vortextracker.tar.gz
• hwrfv3.4a_ncep-coupler.tar.gz
• hwrfv3.4a_wrf.tar.gz
• hwrfv3.4a_wps.tar.gz
• hwrfv3.4a_upp.tar.gz
• hwrfv3.4a_gsi.tar.gz

After copying these tar files to a user-defined HWRF top directory and expanding them,
the user should see the following directories.

• WRFV3 –Weather Research and Forecasting model
• WPSV3 –WRF Pre-Processor
• UPP –Unified Post-Processor
• GSI – Gridpoint Statistical Interpolation 3D-VAR data assimilation
• hwrf-utilities –Vortex initialization, utilities, tools, and supplemental libraries
• gfdl-vortextracker – Vortex tracker
• ncep-coupler – Ocean/atmosphere coupler
• pomtc – Tropical cyclone version of POM

For the remainder of this document, it will be assumed that the tar files have been
expanded under	 ${SCRATCH}/HWRF.

The directory trees for these eight components are listed as follows.

1. hwrf-utilities (HWRF Utilities programs and scripts)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the HWRF-Utilities code
| |____configure script to create the configure.hwrf file for compile
| |____exec/ (executables)
| |____libs/ (libraries including blas, sp, sfcio, bacio, w3 and bufr)
| |____makefile top level makefile
| |____parm/ (various namelists including those for WPS, WRF, GSI, and UPP;

 10

| | all WRF lookup tables from run subdirectory, some of which are
| | modified for HWRF)
| |____scripts/ (scripts used to run HWRF system)
| | |____funcs (shell functions used by the scripts)
| |____tools/ (source code for tools to run HWRF system)
| | Makefile makefile for tools code
| | |____grbindex
| | |____hwrf_data_remv
| | |____hwrf_wrfout_newtime
| | |____wgrib
| |____vortex_init_2d/ (source code for the 2-domain, non-operational, configuration of
 HWRF)
| | Makefile makefile for vortex_init_2d code
| | |____hwrf_anl_bogus
| | |____hwrf_anl_cs
| | |____hwrf_anl_step2
| | |____hwrf_create_nest
| | |____hwrf_create_trak_fnl
| | |____hwrf_create_trak_guess
| | |____hwrf_diffwrf_3dvar
| | |____hwrf_guess
| | |____hwrf_pert_ct
| | |____hwrf_set_ijstart
| | |____hwrf_split
| | |____interpolate
| | |____merge_nest
| |____vortex_init/ (source code for the 3-domain (operational) configuration of
 HWRF
| | Makefile makefile for vortex_init code
| | |____hwrf_anl_bogus
| | |____hwrf_anl_cs
| | |____hwrf_anl_step2
| | |____hwrf_create_nest
| | |____hwrf_create_trak_fnl
| | |____hwrf_create_trak_guess
| | |____hwrf_diffwrf_3dvar
| | |____hwrf_guess
| | |____hwrf_pert_ct
| | |____hwrf_set_ijstart
| | |____hwrf_split
| | |____interpolate
| | |____merge_nest
| |____wrapper_scripts/ (top-level wrapper scripts to run HWRF system)

 11

2. pomtc (POM-TC Ocean model)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the pomtc code
| |____configure script to create the configure.pom file for compile
| |____makefile top level makefile
| |____ocean_exec/ (ocean model executables)
| |____ocean_init/ (source code for generating ocean model initial condition)
| | Makefile makefile for the ocean initialization code
| | |____eastatl
| | |____ext_eastat
| | |____eastpac
| | |____united
| | |____gfdl_find_region
| | |____getsst
| | |____sharp_mcs_rf_l2m_rmy5
| | |____date2day
| | |____day2date
| |____ocean_main/ (source code for the ocean forecast model)
| | Makefile makefile for the ocean model code
| | |____ocean_united
| | |____ocean_eastatl
| | |____ocean_eastatl_ext
| | |____ocean_eastpacl
| |____ocean_parm/ (namelists for ocean model)
| |____ocean_plot/ (sample GrADS scripts used to plot ocean output)

3. ncep-coupler (NCEP Coupler)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the coupler code
| |____configure script to create the configure.cpl file for compile
| |____cpl_exec/ (coupler executables)
| |____hwrf_wm3c/ (source code for an updated 3-way version of the coupler)
| |____makefile top level makefile

4. gfdl-vortextracker (GFDL Vortex Tracker)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the tracker code
| |____configure script to create the configure.trk file for compile
| |____makefile top level makefile

 12

| |____trk_exec/ (GFDL vortex tracker executables)
| |____trk_plot/ (GFDL vortex tracker plot scripts and data)
| |____trk_src / (GFDL vortex tracker source codes)

5. WRFV3 (Atmospheric model)

| |____ Makefile makefile used to compile WRFV3
| |____Registry/ (WRFV3 Registry files)
| |____arch/ (compile options)
| |____chem/ (WRF-Chem, not used in HWRF)
| |____clean script to clean created files and executables
| |____compile script to compile the WRF code
| |____configure script to create the configure.wrf file for compile
| |____dyn_em/ (WRF- Adanced Research WRF (ARW) dynamic modules, not
 used in HWRF)
| |____dyn_exp/ ('toy' dynamic core, not used by HWRF)
| |____dyn_nmm/ (WRF-NMM dynamic modules, used by HWRF)
| |____external/ (external packages including ocean coupler interface)
| |____frame/ (modules for WRF framework)
| |____inc/ (include files)
| |____main/ (WRF main routines, such as wrf.F)
| |____phys/ (physics modules)
| |____run/ (run directory, HWRF can be run in other directories)
| |____share/ (modules for WRF mediation layer and WRF I/O)
| |____test/ (sub-dirs where one can run specific configuration of WRF)
| |____tools/ (tools directory)
| |____var/ (WRF-Var)

See the WRF-NMM User's Guide for more information. The WRF-NMM User’s Guide is
available at http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

6. WPSV3 (WRF Pre-processor)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the WPS code
| |____configure script to create the configure.wps file for compile
| |____geogrid/ (source code for geogrid.exe)
| |____link_grib.csh script used by ungrib to link input GRIB files, not used by HWRF
| |____metgrid/ (source code for metgrid.exe)
| |____ungrib/ (source code for ungrib.exe)
| |____test_suite/ (WPS test cases)
| |____util/ (utility programs for WPSV3)

 13

7. UPP (Unified Post-Processor)

| |____arch/ (compile options)
| |____bin/ (executables)
| |____clean script to clean created files and executables
| |____compile script to compile the UPP code
| |____configure script to create the configure.upp file for compile
| |____include/ (include files)
| |____lib/ (libraries)
| |____makefile makefile used to build UPP code
| |____parm/ (parameter files, which controls how the UPP is performed, not
used by HWRF)
| |____scripts/ (sample scripts running UPP, not used by HWRF)
| |____src/ (UPP source codes)

8. GSI (Gridpoint Statistical Interpolation)

| |____arch/ (compile options)
| |____clean script to clean created files and executables
| |____compile script to compile the GSI code
| |____configure script to create the configure.gsi file for compile
| |____include/ (include files)
| |____lib/ (libraries)
| |____makefile makefile used to build GSI code
| |____run/ (executables)
| |____scripts/ (sample scripts running GSI, not used by HWRF)
| |____src/ (GSI source codes)
| |____util/ (GSI utilities, not used by HWRF)

1.4 Input Data Directory Structure

Users will need the datasets below as input to HWRF components. Test datasets can be
obtained from the DTC website. In order to use the DTC-supported scripts for running
HWRF, these datasets must be stored following the directory structure below in a disk
accessible by the HWRF scripts.

1. Tcvitals (TCVitals data)
2. abdecks (a-deck and b-deck files)
3. Loop_current (loop current data for ocean initialization)

hwrf_gfdl_loop_current_wc_ring_rmy5.dat.${YYYYMMDD} and
hwrf_gfdl_loop_current_rmy5.dat.${YYYYMMDD}, where ${YYYYMMDD} is
the date. For example, hwrf_gfdl_loop_current_rmy5.dat.20110823 and

 14

hwrf_gfdl_loop_current_wc_ring_rmy5.dat.20110823 contain the loop current and
warm-core ring information for August 23 2011.

4. GFS (input data from GFS)
4.1 gridded (GFS gridded data, for WRF initialization)

GFS_HWRF34a_gridded has subdirectories $(YYYYMMDDHH}, which in
turn, contain GFS gridded data gfs.${YYYYMMDDHH}.pgrbf${hhh} where
${YYYYMMDDHH} is the initial time and ${hhh} is the forecast hour.
For example, gfs.2011082312.pgrbf024 is a GFS 24 hour forecast whose
initial time is August 23 12Z 2011.

4.2 spectral (GFS spectral data, for ocean initialization)

GFS_HWRF34a_spectral has subdirectories $(YYYYMMDDHH}, which in
turn, contain GFS spectral data gfs.${YYYYMMDDHH}.t${hh}z.sanl and
gfs.${YYYYMMDDHH}.t${hh}z.sfcanl, where ${YYYYMMDDHH} is the
initial time and ${hh} is the forecast hour. For example,
gfs.2011082312.t12z.sanl and gfs.2011082312.t12z.sfcanl are initial-time GFS
spectral data in a GFS forecast whose initial time is August 23 12Z 2011.

4.3 obs (observational data for GSI in prepBUFR and BUFR formats)

GFS_HWRF34a_obs has subdirectories ${YYYYMMDDHH}, which in turn,
contain the following data that will be used in GSI:
gfs.${YYYYMMDDHH}.prepbufr
where	 ${YYYYMMDDHH}	 is	 the	 date	 for	 the	 observations.

5. fix

5.1 crtm (for UPP)

5.2 gsi (for GSI)

5.3 pomtc (for ocean initialization)

gfdl_ocean_topo_and_mask.eastatl
gfdl_ocean_topo_and_mask.eastatl_extn
gfdl_Hdeepgsu.eastatl

 gfdl_gdem.[00-13].ascii
 gfdl_initdata.eastatl.[01-12]
 gfdl_initdata.gdem.united.[01-12]
 gfdl.initdata.united.[01-12]
 gfdl_ocean_readu.dat.[01-12]
 gfdl_ocean_spinup_gdem3.dat.[01-12]
 gfdl_ocean_spinup_gspath.[01-12]

 15

 gfdl_ocean_spinup.BAYuf
 gfdl_ocean_spinup.FSgsuf
 gfdl_ocean_spinup.SGYREuf
 gfdl_ocean_topo_and_mask.united

 gfdl_pctwat
 gfdl_raw_temp_salin.eastpac.[01-12]

1.5 Production Directory Structure

If a user uses the scripts included in the released tar files to run the HWRF system, the
following production directories will be created and used:

The top production directory is: ${HWRF_OUTPUT_DIR}/SID/${yyyymmddhh} (where
SID is storm ID, e.g., 09L, and ${yyyymmddhh} is the forecast initial time).
The directory ${HWRF_OUTPUT_DIR}/SID/${yyyymmddhh} has the following sub-
directories:

1. messages (created by hwrfdomain.ksh)
2. geoprd (created by geogrid.ksh)
3. ungribprd (created by ungrib.ksh)
4. metgridprd (created by metgrid.ksh)
5. realprd (created by real.ksh)
6. wrfghostprd (created by wrf.ksh run in “ghost” mode)
7. wrfanalysisprd (created by wrf.ksh run in “analysis” mode)
8. trkanalysisprd (created by track_analysis.ksh)
9. relocateprd (created by vortex initialization scripts)
10. gsiprd (created by GSI scripts, if GSI is run)
11. mergeprd (created by merge.ksh)
12. oceanprd (created by ocean initialization scripts)

• sharpn (created by the sharpening program, present only for
“united” ocean domain)

• getsst (created by the procedure to extract the SST from GFS)
• phase3 (created by the 48-hr spin-up procedure to generate
 geostrophically-balanced currents)
• phase4 (created by the 72-hr spin-up procedure using the wind

 stress extracted from the NHC hurricane message file)
13. wrfprd (created by wrf.ksh in “main” mode)
14. postprd (created by run_unipost)
15. gvtprd (created by tracker.ksh)

 16

1.6 Scripts for Running HWRF

It is recommended that HWRF v3.4a be run using the shell scripts provided with the
HWRF v3.4a release. The scripts are located in two directories. In hwrf-utilities/scripts,
the users can find low-level scripts that interact with the executables, input/output files,
and work directories. These scripts require that several environment variables be set. To
make running HWRF easier, a set of high-level wrapper scripts and a list of global
variables are provided in the directory hwrf-utilities/wrapper_scripts. The users should
edit the list of global variables to customize the options for running the HWRF system.
The wrapper scripts will read the options specified in the list of global variables and drive
the low-level scripts. Usually users will not need to modify the low-level and wrapper
scripts, unless instructed otherwise in the following chapters of the Users Guide. The list
of the environment variables defined in hwrf-utilities/wrapper_scripts/global_ vars.ksh
can be found in Appendix.

Some of the executables are parallel code and can only run on the computation nodes. We
recommend that users first connect to the computer’s remote computation nodes. To do
this on Linux machines that run the Oracle grid engine, such as Jet, users can use the qrsh
command. For example, the command below requests a one-hour connection of 12 cores
on the “hfip” nodes using the account “dtc-hurr”.

qrsh –A dtc-hurr –pe hfip 12 –l h_rt=1:00:00

The user should seek assistance from the system administrator on how to connect to the
computation nodes on the machine used to run HWRF.

After the interactive job starts and the user is connected to the computation nodes, the
user should also setup the environment to run parallel jobs. On Linux machines that run
the Oracle grid engine, this can be done by running the following commands.

For csh or tcsh:

set host=`uname -n`
echo $host
setenv JOB_ID `qstat | grep "$host " | awk '{print $1}'`
setenv MACHINE_FILE /tmp/${JOB_ID}*/machines
setenv NSLOTS `cat $MACHINE_FILE| wc -l`

For bash or ksh:

host=`uname -n`
echo $host
export JOB_ID=`qstat | grep "$host " | awk '{print $1}'`
fn=`ls /tmp/${JOB_ID}*/machines`
export MACHINE_FILE=$fn
export NSLOTS=`cat $MACHINE_FILE| wc -l`

 17

After the environment is set up to run parallel jobs, the user can run the wrapper scripts
by typing their names in the terminal.

Parallel code can also be submitted to the computation nodes using a batch system. For
the IBM platform that uses the AIX Operational System and the batch system Load
Sharing Facility (LSF), the wrapper script hwrf_wrapper should be edited to contain the
LSF options listed below:

#BSUB -P 99999999 # Project 99999999
#BSUB -a poe # select poe
#BSUB -n 202 # number of total (MPI) tasks
#BSUB -R "span[ptile=32]" # run a max of 16 tasks per node
#BSUB -J hwrf # job name
#BSUB -o hwrf.%J.out # output filename
#BSUB -e hwrf.%J.out # error filename
#BSUB -W 2:30 # wallclock time
#BSUB -q debug # queue
#BSUB -K # Don't return prompt until the job is

finished

For a Linux platform which uses the Oracle Grid Engine, previously known as Sun Grid
Engine (SGE) batch system, the wrapper script hwrf_wrapper should be edited to contain
the SGE options listed:

 #$ -cwd -V #Job will execute from current directory and
 export variables
 #$ -N HWRF # Job name
 #$ -A 99999999 # Project Account
 #$ -pe hfip 202 # parallel environment queue and number of
 processors
 #$ -l h_rt=03:00:00 # Time limit
 #$ -o output # Output filename
 #$ -e output # Error filename

After the batch system options and environment variables are defined, run the wrapper
scripts (for example hwrf_wrapper) using the command:

• On IBM with LSF:
bsub < hwrf_wrapper

• On Linux with SGE:
qsub hwrf_wrapper

The wrapper script hwrf_wrapper will be submitted to the computation nodes and, once it
starts, will call the low-level script wrf.ksh.

 18

Chapter 2: Software Installation

2.1 Introduction

The DTC community HWRF system, which is based on the NOAA operational WRF
hurricane system (HWRF), consists of eight component models.

 WRF Atmospheric Model
 WRF Preprocessing System (WPS)
 Unified Post Processor (UPP)
 Gridpoint Statistical Interpolation (GSI)
 HWRF Utilities
 Tropical Cyclone Princeton Ocean Model (POM-TC)
 GFDL Vortex Tracker
 NCEP Atmosphere-Ocean Coupler

Each of these components is available from the DTC as community software. The first
three of these components are the traditional WRF components: WRF, WPS, and UPP.
GSI is a 3D variational data assimilation code used for data assimilation, and the
remaining four components are specific to the hurricane system itself, and as such are
referred to as the hurricane components of the HWRF system.

This chapter discusses how to build the HWRF system. It starts in Section 2.2 by
discussing where to find the source code. Section 2.3 covers the preferred directory
structure and how to unpack the tar files. Section 2.4 covers the system requirements for
building and running the components. Section 2.5 discusses the libraries included in the
HWRF-Utilities component. Section 2.6 covers building WRF-NMM for HWRF. The
remaining sections are devoted to building each of the remaining components of the
HWRF system.

2.2 Obtaining the HWRF Source Code

The HWRF hurricane system consists of eight components. All of these are available
from the HWRF website. While most of these codes are also available from other
community websites, the versions needed for HWRF should be acquired from the DTC
HWRF website to ensure they are a consistent set.

All of the HWRF components can be obtained through the HWRF website

http://www.dtcenter.org/HurrWRF/users

 19

by selecting the Download and HWRF System tabs on the left vertical menu. New users
must first register before downloading the source code. Returning users need only
provide their registration email address. A successful download produces eight tar files.

• hwrfv3.4a_utilities.tar.gz
• hwrfv3.4a_pomtc.tar.gz
• hwrfv3.4a_gfdl-vortextracker.tar.gz
• hwrfv3.4a_ncep-coupler.tar.gz
• hwrfv3.4a_wrf.tar.gz
• hwrfv3.4a_wps.tar.gz
• hwrfv3.4a_upp.tar.gz
• hwrfv3.4a_gsi.tar.gz

After downloading each of the component codes, the user should check the links to
known issues and bug fixes to see if any code updates are required. You now have all the
HWRF system components as gzipped tar files. The next section describes how to
organize them.

2.3 Setting up the HWRF System

The HWRF run scripts provided by the DTC are reasonably flexible and with minimal
effort can support almost any layout. For simplicity, it is assumed that the HWRF system
will be set up in a single flat directory structure. Because of the storage requirements
necessary for the complete HWRF system setup, it typically will need to be located on a
computer’s “scratch” or “temporary” storage space. Therefore before unpacking the tar
files you have just downloaded, create a single working directory in that workspace. Then
move the tar files into it, and unpack them there.

You may use the UNIX commands:

 mkdir -p ${SCRATCH}/HWRF
 mv *.gz ${SCRATCH}/HWRF
 cd ${SCRATCH}/HWRF

The tar files can be unpacked by use of the GNU command, gunzip,

gunzip *.tar.gz

and the tar files extracted by running tar -xvf individually on each of the tar files.

tar –xvf hwrfv3.4a_utilities.tar
tar –xvf hwrfv3.4a_pomtc.tar
tar –xvf hwrfv3.4a_gfdl-vortextracker.tar
tar –xvf hwrfv3.4a_ncep-coupler.tar

 20

tar –xvf hwrfv3.4a_wrf.tar
tar –xvf hwrfv3.4a_wps.tar
tar –xvf hwrfv3.4a_upp.tar
tar –xvf hwrfv3.4a_gsi.tar

Once unpacked, there should be the eight source directories.

 WRFV3 –Weather Research and Forecasting model
 WPSV3 –WRF Pre-processor
 UPP –Unified Post-Processor
 GSI – Gridpoint statistical interpolation 3D var data assimilation
 hwrf-utilities –Vortex initialization, utilities, tools, and supplemental libraries
 gfdl-vortextracker – Vortex tracker
 ncep-coupler – Ocean/atmosphere coupler
 pomtc – Tropical cyclone version of POM

A	 ninth	 directory	 for	 the	 output	 can	 also	 be	 created	 here	 as	 well.	
	
	 mkdir results

The user should make sure the output directory created here is consistent with the
environment variable HWRF_OUTPUT_DIR defined in hwrf-
utilities/wrapper_scripts/global_vars.ksh.
	 	
We will next discuss the system requirement to build the HWRF system.

2.4 System Requirements, Libraries and Tools

In practical terms, the HWRF system consists of a collection of shell scripts, which run a
sequence of serial and parallel executables. The source code for these executables is in
the form of programs written in FORTRAN, FORTRAN 90, and C. In addition, the
parallel executables require some flavor of MPI/OpenMP for the distributed memory
parallelism, and the I/O relies on the netCDF I/O libraries. Beyond the standard shell
scripts, the build system relies on use of the Perl scripting language and GNU make and
date.

The basic requirements for building and running the HWRF system are listed below.

 FORTRAN 90+ compiler
 C compiler
 MPI v1.2+
 Perl
 netCDF V3.6+
 LAPACK and BLAS

 21

 GRIB1/2

Because these tools and libraries are typically the purview of system administrators to
install and maintain, they are lumped together here as part of the basic system
requirements.

2.4.1 Compilers

The DTC community HWRF system successfully builds and runs on IBM AIX and
Linux platforms. Specifically the following compiler/OS combinations are supported.

• IBM with xlf Fortran compiler
• Linux with
o PGI (pgf90+pgcc)
o Intel (ifort+icc)

HWRF has only been tested on the IBM AIX v5, Linux PGI (v11) and Linux Intel (v11).
Unforeseen build issues may occur when using older compiler versions. As always, the
best results come from using the most recent version of things.

2.4.2 netCDF and MPI

The HWRF system requires a number of support libraries not included with the source
code. Many of these libraries may be part of the compiler installation, and are
subsequently referred to as system libraries. For our needs, the most important of these
libraries are netCDF and MPI.

An exception to the rule of using the most recent version of code, libraries, and compilers
is the netCDF library. The HWRF system I/O requires the most recent V3 series of the
library. Version 4 of netCDF diverges significantly from version 3, and is not supported.
The preferred version of the library is netCDF V3.6+. The netCDF libraries can be
downloaded from the Unidata website.

http://www.unidata.ucar.edu

Typically, the netCDF library is installed in a directory that is included in the users path
such as /usr/local/lib. When this is not the case, the environment variable NETCDF, can
be set to point to the location of the library. For csh/tcsh, the path can be set with the
command:

setenv NETCDF /path_to_netcdf_library/.

For bash/ksh, the path can be set with the command:

 22

export NETCDF=/path_to_netcdf_library/.
It is crucial that system libraries, such as netCDF, be built with the same FORTRAN
compiler, compiler version, and compatible flags, as used to compile the remainder of the
source code. This is often an issue on systems with multiple FORTRAN compilers, or
when the option to build with multiple word sizes (e.g. 32-bit vs. 64-bit addressing) is
available.

Many default Linux installations include a version of netCDF. Typically this version is
only compatible with code compiled using gcc. To build the HWRF system, a version of
the library must be built using your preferred compiler and with both C and FORTRAN
bindings. If you have any doubts about your installation, ask your system administrator.

Building and running the HWRF distributed memory parallel executables requires that a
version of the MPI library be installed. Just as with the netCDF library, the MPI library
must be built with the same FORTRAN compiler, and use the same word size option
flags, as the remainder of the source code.

Installing MPI on a system is typically a job for the system administrator and will not be
addressed here. If you are running HWRF on a computer at a large center, check the
machines’ documentation before you ask the local system administrator. On Linux
systems, you can typically determine whether MPI is available; try running the following
UNIX commands.

 which mpif90
 which mpicc
 which mpirun

If any of these tests return with Command Not Found, there may be a problem with your
MPI installation. Contact your system administrator for help if you have any questions.

2.4.3 LAPACK and BLAS

The LAPACK and BLAS are open source mathematics libraries for the solution of linear
algebra problems. The source code for these libraries is freely available to download from
NETLIB at

http://www.netlib.org/lapack/.

Most commercial compilers provide their own optimized versions of these routines.
These optimized versions of BLAS and LAPACK provide superior performance to the
open source versions.

On the IBM machines, the AIX compiler is often, but not always, installed with the
Engineering and Scientific Subroutine Libraries or ESSL. In part, the ESSL libraries are
highly optimized parallel versions of many of the LAPACK and BLAS routines. The

 23

ESSL libraries provide all of the linear algebra library routines needed by the HWRF
system.

On Linux systems, HWRF supports both the Intel ifort and PGI pgf90 compilers. The
Intel compiler has its own optimized version of the BLAS and LAPACK routines called
the Math Kernel Library or MKL. The MKL libraries provide most of the LAPACK and
BLAS routines needed by the HWRF system. The PGI compiler typically comes with its
own version of the BLAS and LAPACK libraries. Again, the PGI version of BLAS and
LAPACK contain most of the routines needed by HWRF. For PGI these libraries are
loaded automatically. Since the vender versions of the libraries are often incomplete, a
copy of the full BLAS library is provided with the HWRF-Utilities component. The build
system will link to this version last.

2.5 Included Libraries

For convenience in building HWRF-Utilities, the POM-TC, and the GFDL Vortex
Tracker components, the HWRF-Utilities component includes a number of libraries in the
hwrf-utilities/libs/src/ directory. These libraries are built automatically when the HWRF-
Utilities component is built. The included libraries are listed below.

• BACIO
• BLAS
• BUFR
• SFCIO
• SIGIO
• SP
• W3

The other components, WPS, WRF, UPP, and GSI, come with their own versions of
many of these libraries, but typically they have been customized for that particular
component and should not be used by the other components.

When the HWRF-Utilities component is compiled, it starts by first building all the
included libraries. The vortex initialization code contained in the HWRF-Utilities
component requires all of the above libraries except for the SFCIO library. In addition, it
requires both the BLAS and LAPACK mathematical libraries when the IBM ESSL
library is not included with the compiler installation.

The POMTC component requires the SFCIO, SP and W3 libraries. In addition, the local
copy of the BLAS library is required when the ESSL library is not included with the
compiler installation. This is because the vender-supplied versions of BLAS are typically
incomplete, and the local version supplements the vender version. Typically this is for

 24

any system other than IBM. The GFDL vortex tracker component requires the BACIO
and W3 libraries. The NCEP-Coupler does not require any additional libraries.

2.5.1 Component Dependencies

The eight components of the HWRF system have certain inter-dependencies. Many of the
components depend on libraries produced by other components. For example, four of the
components, WPS, UPP, GSI, and the HWRF-Utilities, require linking to the WRF I/O
API libraries to build. Since these I/O libraries are created as part of the WRF build, the
WRF component must be built first. Once WRF is built, WPS, UPP, GSI, or the HWRF-
Utilities can be built in any order. Since building the HWRF-Utilities produces the
supplemental libraries needed by POM-TC and by the GFDL Vortex Tracker, the HWRF
utilities must be built before either of these components. The remaining component, the
NCEP Coupler, can be built independently of any of the other components.

The component dependency is as follows.

• WRF
o WPS
o UPP
o GSI
o HWRF Utilities

 POM-TC (BLAS on Linux, sfcio, sp, w3)
 GFDL vortex tracker (w3 & bacio)

• NCEP Coupler

2.6 Building WRF-NMM

The WRF code has a fairly sophisticated build mechanism. The package attempts to
determine the machine where the code is being built, and then presents the user with
supported build options on that platform. For example, on a Linux machine, the build
mechanism determines whether the machine is 32-bit or 64-bit, prompts the user for the
desired type of parallelism (such as serial, shared memory, distributed memory, or
hybrid), and then presents a selection of possible compiler choices.

A helpful guide to building WRF using PGI compilers on a 32-bit or 64-bit LINUX
system can be found at:

http://www.pgroup.com/resources/tips.htm.

 25

2.6.1 Configuring WRF-NMM

To correctly configure WRF-NMM for the HWRF system, set the following additional
environment variables beyond what WRF typically requires:

In C-Shell use the commands:

setenv HWRF 1
setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

and for IBM AIX builds add:
setenv IBM_REDUCE_BUG_WORKAROUND 1

In Bash Shell use the commands:
export HWRF=1
export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

and for IBM AIX builds add:
export IBM_REDUCE_BUG_WORKAROUND=1

These settings produce a version of WRF-NMM compatible with the HWRF system.
There is a bug in the IBM MPI implementation. Some MPI processes will get stuck in
MPI_Reduce and not return until the PREVIOUS I/O server group finishes writing.
When the environment variable IBM_REDUCE_BUG_WORKAROUND is set to 1, a
workaround is used that replaces the MPI_Reduce call with many MPI_Send and
MPI_Recv calls that perform the sum on the root of the communicator.

Note that setting the environment variable WRF_NMM_NEST to 1 does not preclude
running with a single domain.

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/HWRF/WRFV3) and type:

./configure

You will be presented with a list of build choices for your computer. These choices may
include multiple compilers and parallelism options.

The choices for the IBM architecture are listed below.

 1. AIX xlf compiler with xlc (serial)
 2. AIX xlf compiler with xlc (smpar)
 3. AIX xlf compiler with xlc (dmpar)

 26

 4. AIX xlf compiler with xlc (dm+sm)

For the HWRF system, select option 3 for distributed memory parallelism (dmpar).

For Linux architectures, there are 34 options. At this time, only the distributed memory
(dmpar) builds are recommended for the HWRF system on Linux environments.
Therefore, depending on your choice of compiler and computing hardware, only options
3, 7, 11, 15 or 19 (shown below) are recommended.

 3. Linux x86_64, PGI compiler with gcc (dmpar)
 7. Linux x86_64, PGI compiler with pgcc, SGI MPT (dmpar)
 11. Linux x86_64, PGI accelerator compiler with gcc (dmpar)
 15. Linux x86_64 i486 i586 i686, ifort compiler with icc (dmpar)
 19. Linux x86_64 i486 i586 i686, ifort compiler with icc, SGI MPT (dmpar)

The configure step for the WRF model is now completed. A file has been created in the
WRF directory called configure.wrf. The compile options and paths in the configure.wrf
file can be edited for further customization of the build process.

2.6.2 Compiling WRF-NMM

To build the WRF-NMM component enter the command:

./compile nmm_real

It is generally advisable to save the standard out and error to a log file for reference. In
the csh/tcsh shell this can be done with the command:

./compile nmm_real |& tee build.log

For the ksh/bash shell use the command:

./compile nmm_real 2>&1 | tee build.log

In both cases, this sends the standard out and the standard error to both the file build.log
and to the screen.

The approximate compile time varies according to the system being used. On IBM AIX
machines, the compiler optimization significantly slows down the build time and it
typically takes at least half an hour to complete. On most Linux systems, the WRF model
typically compiles in around ten minutes.

It is important to note that the commands ./compile -h and ./compile produce a listing of
all of the available compile options, but only the nmm_real option is relevant to the
HWRF system.

 27

To remove all object files (except those in external/), type:

./clean

To conduct a complete clean which removes all built files in all directories, as well as the
configure.wrf, type:

./clean -a

A complete clean is strongly recommended if the compilation failed, the Registry has
been changed, or the configuration file is changed.

A successful compilation produces two executables listed below in the directory main.

real_nmm.exe: WRF initialization
wrf.exe: WRF model integration

Further details on the HWRF atmospheric model, physics options, and running the model
can be found in the Running HWRF chapter of the Users Guide.

Complete details on building and running the WRF-NMM model are available in the
WRF-NMM User’s Guide, which is available from the link

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

2.7 Building HWRF-Utilities

The hwrf-utilities directory consists of an eclectic collection of source code and libraries.
The libraries, which are provided in support of the POM-TC and the GFDL Vortex
Tracker, include the BACIO, BLAS, BUFR, SIGIO, SFCIO, SP and W3 libraries. In
addition to these libraries, this component includes the source code for the vortex
initialization routines and software tools such as the grbindex.

2.7.1 Set Environment Variables

The HWRF utilities build requires that two path variables, NETCDF and WRF_DIR, be
set to the appropriate paths. The netCDF library path NETCDF is required for building
the WRF-NMM component, and its value should be appropriately set if that component
compiled successfully. The WRF_DIR path variable should point to the WRF directory
compiled in the previous section. You must first build WRF before compiling any of the
other components.

 28

If you have followed the directory structure suggested in Section 2.3, the WRF_DIR path
should be set to ${SCRATCH}/HWRF/WRFV3. In csh/tcsh, the variables may be set with
the commands:

setenv NETCDF /absolute_path_to_appropriate_netCDF_library/
setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3

For the ksh/bash shells, use:
export NETCDF=/absolute_path_to_appropriate_netCDF_library/
export WRF_DIR=${SCRATCH}/HWRF/WRFV3

It is crucial that the Fortran compiler used to build the libraries (Intel, PGI,
XLF, etc.) be the same as the compiler used to compile the source code.
Typically, this is only an issue in two situations: on Linux systems having multiple
compilers installed; and on systems where there is a choice between building the code
with either 32-bit or 64-bit addressing.

2.7.2 Configure and Compile

To configure HWRF-Utilities for compilation, from within the hwrf-utilities directory,
type:

./configure

The configure script checks the system hardware, and if the path variables are not set,
asks for the correct paths to the netCDF libraries and the WRF build directory. It
concludes by asking the user to choose a configuration supported by current machine
architecture.

For the IBM, only one choice is available.

 1. AIX (dmpar)

For Linux six options are available.

 1. Linux x86_64, PGI compiler w/LAPACK (dmpar)
 2. Linux x86_64, PGI compiler w/LAPACK, SGI MPT (dmpar)
 3. Linux x86_64, Intel compiler w/MKL (dmpar)
 4. Linux x86_64, Intel compiler w/MKL, SGI MPT (dmpar)
 5. Linux x86_64, Intel compiler w/LAPACK (dmpar)
 6. Linux x86_64, Intel compiler w/LAPACK, SGI MPT (dmpar)

For the PGI compiler, pick options 1 or 2. For Intel builds, pick option 3 or 4 if your
compiler includes the MKL libraries, and option 5 or 6 if it does not.

 29

If successful, the configure script creates a file called configure.hwrf in the hwrf-utilities
directory. This file contains compilation options, rules, and paths specific to the current
machine architecture, and can be edited to change compilation options, if desired.
In csh/tcsh, to compile the HWRF utilities and save the build output to a log file,
type:

./compile |& tee build.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee build.log

To remove all object files, type:

./clean

To conduct a complete clean which removes ALL build files, including the executables,
libraries, and the configure.hwrf, type:

./clean -a

A complete clean is strongly recommended if the compilation failed or if the
configuration file is changed.

If the compilation is successful, it will create 39 executables in the directory exec/.

diffwrf_3dvar.exe*
diffwrf_3dvar_2d.exe*
grbindex.exe*
hwrf_anl_4x_step2.exe*
hwrf_anl_4x_step2_2d.exe*
hwrf_anl_bogus_10m.exe*
hwrf_anl_bogus_10m_2d.exe*
hwrf_anl_cs_10m.exe*
hwrf_anl_cs_10m_2d.exe*
hwrf_create_nest_1x_10m.exe*
hwrf_create_nest_1x_10m_2d.exe*
hwrf_create_trak_fnl.exe*
hwrf_create_trak_fnl_2d.exe*
hwrf_create_trak_guess.exe*
hwrf_create_trak_guess_2d.exe*
hwrf_data_remv.exe*
hwrf_guess.exe*
hwrf_guess_2d.exe*
hwrf_inter_2to1.exe*
hwrf_inter_2to1_2d.exe*
hwrf_inter_2to2.exe*

 30

hwrf_inter_2to6.exe*
hwrf_inter_2to6_2d.exe*
hwrf_inter_4to2.exe*
hwrf_inter_4to2_2d.exe*
hwrf_inter_4to6.exe*
hwrf_inter_4to6_2d.exe*
hwrf_merge_nest_4x_10m2_2d.exe*
hwrf_merge_nest_4x_step12_3n.exe*
hwrf_merge_nest_4x_step1_2d.exe*
hwrf_merge_nest_4x_step2_2d.exe*
hwrf_pert_ct1.exe*
hwrf_pert_ct_2d.exe*
hwrf_split1.exe*
hwrf_split_2d.exe*
hwrf_swcorner_dynamic.exe*
hwrf_swcorner_dynamic_2d.exe*
hwrf_wrfout_newtime.exe*
wgrib.exe*

In addition, it will create ten libraries in the directory libs/.

libbacio.a - BACIO library
libblas.a - BLAS library
libbufr_i4r4.a - BUFR library built with -i4 –r4 flags
libbufr_i4r8.a - BUFR library built with -i4 -r8 flags
libsfcio_i4r4.a - SFCIO library built with -i4 -r4 flags
libsigio_i4r4.a – SIGIO library built with –i4 –r4 flags
libsp_i4r8.a - SP library built with -i4 -r8 flags
libsp_i4r4.a - SP library built with -i4 -r4 flags
libw3_i4r8.a - W3 library built with -i4 -r8 flags
libw3_i4r4.a - W3 library built with -i4 -r4 flags

These libraries will be used by the GFDL Vortex Tracker and the POM-TC ocean model.
The configuration step for these components will require setting a path variable to point
to the hwrf-utilities/libs/ directory in the HWRF utilities directory.

The HWRF-Utilities can be compiled to produce only the libraries by typing the
command below.

./compile library

This is useful for users that do not intend to use the entire HWRF system, but just need
the libraries to build the tracker.

 31

2.8 Building POM-TC

2.8.1 Set Environment Variables

The Tropical Cyclone version of the POM-TC requires three external libraries: SFCIO,
SP, and W3. On platforms that lack the ESSL mathematical libraries, typically anything
other than IBM AIX machines, a fourth library (BLAS) is required. All of these libraries
are located in the hwrf-utilities/libs/ directory and should be available if the HWRF
Utilities component has been built successfully. You must first build them before
building POM-TC.

Again, assuming the directory structure proposed in Section 2.3, for csh/tcsh, the first
three library paths can be set with the commands:

setenv LIB_W3_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_SP_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_SFCIO_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/

For the ksh/bash shell, the first three library paths can be set with the commands:

export LIB_W3_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_SP_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_SFCIO_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

In addition to the three previous libraries, POM-TC requires linear algebra routines from
the BLAS library. When building POM-TC on an IBM platform, the build will
automatically use the ESSL library, which includes highly optimized versions of some of
the BLAS routines. When building POM-TC in a platform without ESSL (such as
Linux), the build system uses the BLAS mathematical library provided with the hwrf-
utilities component. In such a case, the fourth and final path must be set to:

setenv LIB_BLAS_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/

For the csh/tcsh shells, and for the ksh/bash shells the path can be set with:

export LIB_BLAS_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

2.8.2 Configure and Compile

To configure POM-TC for compilation, from within the pomtc directory, type:

./configure

 32

The configure script checks the system hardware, and if the path variables are not set,
asks for software paths to the W3, SP, and SFCIO, and for Linux, the BLAS libraries. It
concludes by asking the user to choose a configuration supported by current machine
architecture.

For the IBM, only one choice is available:

 1. AIX (dmpar)

For Linux, the options are:

 1. Linux x86_64, PGI compiler (dmpar)
 2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
 3. Linux x86_64, Intel compiler (dmpar)
 4. Linux x86_64, Intel compiler, SGI MPT (dmpar)

After selecting the desired compiler option, the configure script creates a file called
configure.pom. This file contains compilation options, rules, and paths specific to the
current machine architecture, and can be edited to change compilation options, if desired.

In csh/tcsh, to compile the POM-TC and save the build output to a log file, type:

./compile |& tee ocean.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee ocean.log

To get help about compilation, type:

./compile -h

To remove all the object files, type:

./clean

To conduct a complete clean, which removes ALL built files, object, executables, and the
configuration file configure.pom, type:

./clean -a

A complete clean is strongly recommended if the compilation failed to build, or if the
configuration file is changed.

If the compilation is successful, thirteen executables are created in ocean_exec/.

 33

 1 gfdl_date2day.exe
 2 gfdl_day2date.exe
 3 gfdl_find_region.exe
 4 gfdl_getsst.exe
 5 gfdl_ocean_eastatl.exe
 6 gfdl_ocean_eastpac.exe
 7 gfdl_ocean_ext_eastatl.exe
 8 gfdl_ocean_united.exe
 9 gfdl_sharp_mcs_rf_l2m_rmy5.exe
 10 hwrf_ocean_eastatl.exe
 11 hwrf_ocean_eastatl_ext.exe
 12 hwrf_ocean_eastpac.exe
 13 hwrf_ocean_united.exe

The executables hwrf_ocean_united.exe, hwrf_ocean_eastpac.exe,
hwrf_ocean_eastatl.exe, and hwrf_ocean_eastatl_ext.exe, are the ocean model
executables used during the coupled atmosphere-ocean model run. The remaining
executables are used for the ocean initialization.

2.9 Building GFDL Vortex Tracker

2.9.1 Set Environment Variables

The GFDL Vortex Tracker requires two external libraries, W3 and BACIO. These
libraries are located in the hwrf-utility/libs/ directory and should be available if the
HWRF utilities are successfully built. You must build the HWRF utilities before building
the vortex tracker.

Again, assuming that the directory structure is the same as that proposed in Section 2.3
for csh/tcsh, the library paths can be set with:

setenv LIB_W3_PATH ${SCRATCH}/HWRF/hwrf-utilities/libs/
setenv LIB_BACIO_${SCRATCH}/HWRF/hwrf-utilities/libs/

For the ksh/bash shells, the library paths can be set using:

export LIB_W3_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/
export LIB_BACIO_PATH=${SCRATCH}/HWRF/hwrf-utilities/libs/

 34

2.9.2 Configure and Compile

To configure the vortex tracker for compilation, from within the tracker directory, type:

./configure

The configure script checks the system hardware, and if the path variables are not set,
asks for software paths to the W3 and BACIO libraries. It concludes by asking the user to
choose a configuration supported by current machine architecture.

For the IBM, only one choice is available:

 1. AIX (serial)

For Linux, the options are:

 1. Linux x86_64, PGI compiler (serial)
 2. Linux x86_64, Intel compiler (serial)
 3. Linux x86_64, Intel compiler super debug (serial)
 4. Linux x86_64, PGI compiler, SGI MPT (serial)
 5. Linux x86_64, Intel compiler, SGI MPT (serial)

The configure script creates a file called configure.trk. This file contains compilation
options, rules, and paths specific to the current machine architecture.
The configure file can be edited to change compilation options, if desired.

In csh/tcsh, to compile the vortex tracker and save the build output to a log file,
type:

./compile |& tee tracker.log

For the ksh/bash shell use the command:

./compile 2>&1 | tee tracker.log

To remove all object files, type:

./clean

To completely clean ALL built files, object, executable, and configure.trk, type:

./clean -a

A complete clean is strongly recommended if the compilation failed, or if the
configuration file is changed.

 35

If the compilation was successful, three executables are created in the directory trk_exec/.

hwrf_gettrk.exe
hwrf_tave.exe
hwrf_vint.exe

2.10	 Building	 the	 NCEP	 Coupler
2.10.1 Configure and Compile

To configure the NCEP Coupler for compilation, from within the ncep-coupler directory,
type:

./configure

The configure script checks the system hardware, asks the user to choose a configuration
supported by current machine architecture, and creates a configure file called
configure.cpl.

For the IBM, only one choice is available:

 1. AIX (dmpar)

For Linux, the options are:

 1. Linux x86_64, PGI compiler (dmpar)
 2. Linux x86_64, Intel compiler (dmpar)
 3. Linux x86_64, Intel compiler, SGI MPT (dmpar)

The configure file configure.cpl contains compilation options, rules, and paths specific to
the current machine architecture, and can be edited to change compilation options if
desired.

In csh/tcsh, to compile the coupler and save the build output to a log file, type:

./compile |& tee coupler.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee coupler.log

To remove all the object files, type:

./clean

 36

To completely clean ALL built files, object, executable, and configure.cpl, type:

./clean -a

A complete clean is strongly recommended if the compilation failed, or if the
configuration file is changed.

If the compilation is successful, it will create the single executable hwrf_wm3c.exe in the
cpl_exec/ directory.

2.11 Building WPS

2.11.1 Background

The WRF WPS requires the same build environment as the WRF-NMM model, including
the netCDF libraries and MPI libraries. Since the WPS makes direct calls to the WRF
I/O API libraries included with the WRF model, the WRF-NMM model must be built
prior to building the WPS.

Set up the build environment for WPS by setting the WRF_DIR environment variable.
For csh/tcsh, use:

setenv WRF_DIR ${SCRACH}/HWRF/WRFV3/

For bash/ksh, use:

export WRF_DIR=${SCRATCH}/HWRF/WRFV3/

In order to run the WRF Domain Wizard (http://wrfportal.org/DomainWizard.html), an optional
tool to assist in creating simulation domains, Java 1.5 or later is needed. If support for
GRIB 2 files is desired, the JASPER library is also needed.

Further details on using the WPS to create HWRF input data can be found in Chapter 3 of
the HWRF Users Guide.

Complete details on building and running the WPS and the Domain Wizard, are available
from the WRF-NMM User’s Guide, and can be downloaded from:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

 37

2.11.2 Configure and Compile

Following the compilation of the WRF-NMM executables, change to the WPS directory
and issue the configure command.

./configure

Select the appropriate “dmpar” option for your architecture and compiler choice. If you
plan to use GRIB2 data, you will also need to select a build option that supports GRIB2
I/O. This will generate the configure resource file.

On IBM AIX computers the listed options are:

 1. AIX (serial)
 2. AIX (serial_NO_GRIB2)
 3. AIX (dmpar)
 4. AIX (dmpar_NO_GRIB2)

Choose 3 if you want GRIB 2 support, and 4 if you don’t. On Linux computers, there are
30 listed options. The first 20 are the most relevant to HWRF.

 1. Linux x86_64, PGI compiler (serial)
 2. Linux x86_64, PGI compiler (serial_NO_GRIB2)
 3. Linux x86_64, PGI compiler (dmpar)
 4. Linux x86_64, PGI compiler (dmpar_NO_GRIB2)
 5. Linux x86_64, PGI compiler, SGI MPT (serial)
 6. Linux x86_64, PGI compiler, SGI MPT (serial_NO_GRIB2)
 7. Linux x86_64, PGI compiler, SGI MPT (dmpar)
 8. Linux x86_64, PGI compiler, SGI MPT (dmpar_NO_GRIB2)
 9. Linux x86_64, IA64 and Opteron (serial)
 10. Linux x86_64, IA64 and Opteron (serial_NO_GRIB2)
 11. Linux x86_64, IA64 and Opteron (dmpar)
 12. Linux x86_64, IA64 and Opteron (dmpar_NO_GRIB2)
 13. Linux x86_64, Intel compiler (serial)
 14. Linux x86_64, Intel compiler (serial_NO_GRIB2)
 15. Linux x86_64, Intel compiler (dmpar)
 16. Linux x86_64, Intel compiler (dmpar_NO_GRIB2)
 17. Linux x86_64, Intel compiler, SGI MPT (serial)
 18. Linux x86_64, Intel compiler, SGI MPT (serial_NO_GRIB2)
 19. Linux x86_64, Intel compiler, SGI MPT (dmpar)
 20. Linux x86_64, Intel compiler, SGI MPT (dmpar_NO_GRIB2)

Select the appropriate “dmpar” option for your choice of compiler. To get help about
compilation, type:

 38

./compile -h

In csh/tcsh, to compile the coupler and save the build output to a log file, type:

./compile |& tee wps.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee wps.log

To conduct a complete clean which removes ALL built files in ALL directories, as well
as the configure.wps, type:

./clean -a

A complete clean is strongly recommended if the compilation failed or if the
configuration file is changed.

After issuing the compile command, a listing of the current working directory should
reveal symbolic links to executables for each of the three WPS programs:
geogrid.exe; ungrib.exe; and metgrid.exe, if the WPS software was successfully installed.
If any of these links do not exist, check the compilation log file to determine what went
wrong.

For full details on the operation of WPS, see the WPS chapter of the WRF-NMM User’s
Guide.

2.12 Building UPP

The NCEP Unified Post-Processor was designed to interpolate WRF output from native
coordinates and variables to coordinates and variables more useful for analysis.
Specifically, UPP de-staggers the HWRF output, interpolates the data from its native
vertical grid to standard levels, and creates additional diagnostic variables.

The UPP requires the same Fortran and C compilers used to build the WRF model. In
addition, UPP requires the netCDF library and the WRF I/O API libraries (the latter is
included with the WRF build).

The UPP build requires a number of support libraries (IP, SP, W3), which are provided
with the source code and are located in the UPP/lib/ directory. These libraries are for the
UPP build only. They should not be confused with the libraries of the same name located
in the hwrf-utilities/libs directory.

 39

2.12.1 Set Environment Variables

The UPP requires the WRF I/O API libraries to successfully build. These are created
when the WRF model is built. If the WRF model has not yet been compiled, it must first
be built before compiling UPP.

Since the UPP build requires linking to the WRF-NMM I/O API libraries, it must be able
to find the WRF directory. The UPP build uses the WRF_DIR environment variable to
define the path to WRF. The path variable WRF_DIR must therefore be set to the
location of the WRF root directory.

In addition to setting the path variable, building UPP for use with HWRF requires setting
the environment variable HWRF. This is the same variable set when building WRF-
NMM for HWRF.

To set up the environment for UPP, the environment variables can be set by typing (for
csh/tcsh):

setenv HWRF 1
setenv WRF_DIR ${SCRACH}/HWRF/WRFV3/

For bash/ksh, the environment variables can be set by typing:

export HWRF=1
export WRF_DIR=${SCRATCH}/HWRF/WRFV3/

2.12.2 Configure and Compile

UPP uses a build mechanism similar to that used by the WRF model. Type configure

./configure

to generate the UPP configure file. The configure script will complain if the WRF_DIR
path has not been set. You will then be given a list of configuration choices tailored to
your computer. For example, for IBM machines there are two options.

 1. AIX with IBM Make ($DEBUG ignored) (serial)
 2. AIX with IBM Make ($DEBUG ignored) (dmpar)
 3. AIX with GNU Make (serial)
 4. AIX with GNU Make (dmpar)

Any of the “dmpar” options (2 or 4) are compatible with the HWRF system. For the
LINUX operating systems, there are eight options. We show the six relevant options here.

 40

 1. Linux x86_64, PGI compiler (serial)
 2. Linux x86_64, PGI compiler (dmpar)
 3. Linux x86_64, Intel compiler (serial)
 4. Linux x86_64, Intel compiler (dmpar)
 5. Linux x86_64, Intel compiler, SGI MPT (serial)
 6. Linux x86_64, Intel compiler, SGI MPT (dmpar)

Any of the “dmpar” options (2,4, or 6) are compatible with the HWRF system. The
configuration script will generate the configure file configure.upp. If necessary, the
configure.upp file can be modified to change the default compile options and paths.

To compile UPP, enter the command (csh/tsch):

./compile |& tee build.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee build.log

This command should create eight UPP libraries in lib/ (libCRTM.a, libbacio.a, libip.a,
libmersenne.a, libsfcio.a, libsigio.a, libsp.a, and libw3.a), and three UPP executables in
bin/ (unipost.exe, ndate.exe, and copygb.exe). Once again, these libraries are for the UPP
only, and should not be used by the other components. To remove all built files, as well
as the configure.upp, type:

./clean

This is recommended if the compilation failed or if the source code has been changed.

For full details on the operation of UPP, see the UPP chapter of the HWRF Users Guide,
and for complete details on building and running the UPP, see the WRF-NMM User’s
Guide, which can be downloaded at:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

2.13 Building GSI

2.13.1 Background

The community GSI requires the same build environment as the WRF-NMM model,
including the netCDF , MPI, and LAPACK libraries. In addition, GSI makes direct calls

 41

to the WRF I/O API libraries included with the WRF model. Therefore the WRF model
must be built prior to building the GSI.

Further details on using the GSI with HWRF can be found in later chapters of this HWRF
Users Guide.

2.13.2 Configure and Compile

Building GSI for use with HWRF requires setting three environmental variables. The
first, HWRF indicates to turn on the HWRF options in the GSI build. This is the same
flag set when building WRF-NMM for HWRF. The second is a path variable pointing to
the root of the WRF build directory. The third is the variable LAPACK_PATH, which
indicates the location of the LAPACK library on your system.

To set up the environment for GSI, the environment variables can be set by typing (for
csh/tcsh):

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/HWRF/WRFV3

For bash/ksh, the environment variables can be set by typing:

export HWRF=1
export WRF_DIR=${SCRATCH}/HWRF/WRFV3

The additional environment variable LAPACK_PATH may be needed on some systems.
Typically, the environment variable LAPACK_PATH needs only to be set on Linux
systems without a vender provided version of LAPACK. IBM systems usually have the
ESSL library installed and therefore do not need the LAPACK. Likewise, the PGI
compiler often comes with a vender-provided version of LAPACK that links
automatically with the compiler. Problems with the vender-supplied LAPACK library are
more likely to occur with the Intel compiler. While the Intel compilers typically have the
MKL libraries installed, the ifort compiler does not automatically load the library. It is
therefore necessary to set the LAPACK_PATH variable to the location of the MKL
libraries when using the Intel compiler.

Supposing that the MKL library path is set to the environment variable MKL, then the
LAPACK environment for csh/tcsh is:

setenv LAPACK_PATH $MKL

for bash/ksh it is:

export LAPACK_PATH=$MKL

 42

To build GSI for HWRF, change into the GSI directory and issue the configure
command:

./configure

Choose one of the configure options listed.

For example, on IBM computers the listed options are as follows.

 1. AIX 64-bit (dmpar,optimize)
 2. AIX 32-bit (dmpar,optimize)

You may choose either option depending on your computer platform. On Linux
computers, the listed options are as follows.

 1. Linux x86_64, PGI compilers (pgf90 & pgcc) (dmpar,optimize)
 2. Linux x86_64, PGI compilers (pgf90 & pgcc), SGI MPT (dmpar,optimize)
 3. Linux x86_64, PGI compilers (pgf90 & gcc) (dmpar,optimize)
 4. Linux x86_64, Intel compiler, EMC OPTIONS (dmpar,optimize)
 5. Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)
 6. Linux x86_64, Intel compiler (ifort & icc), SGI MPT (dmpar,optimize)
 7. Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)

Select the appropriate “dmpar” option for your platform and compiler.

After selecting the proper option, run the compile script (csh/tcsh):

./compile |& tee build.log

For the ksh/bash shell, use the command:

./compile 2>&1 | tee build.log

To conduct a complete clean which removes ALL built files in ALL directories, as well
as the configure.gsi, type:

./clean -a

A complete clean is strongly recommended if the compilation failed or if the
configuration file is changed.

Following the compile command, the GSI executable gsi.exe can be found in the run/
directory. If the executable is not found, check the compilation log file to determine what
went wrong. Another executable, ssrc.exe, which is used to convert a binary data file’s
endianness, can be found in the util/test directory.

 43

For details on using GSI with HWRF, see the GSI chapter in the HWRF Users Guide. For
full details on the operation of GSI, see the DTC Community GSI User’s Guide.

 http://www.dtcenter.org/com-GSI/users/docs/index.php

 44

Chapter	 3:	 HWRF	 Preprocessing	 System

3.1 Introduction

The WRF WPS is a set of three programs whose collective role is to prepare input to
real_nmm program for real data simulations. For general information about working with
WPS, view the WRF-NMM documentation at

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/
 V3/users_guide_nmm_chap1-7.pdf

In the Community HWRF, input data from the GFS is processed through the WPS and
real nmm programs, and then submitted to a vortex relocation procedure described in
Chapter 4.

3.2 How to Run the HWRF Preprocessing Using
Scripts

Four wrapper scripts are used to preprocess data for HWRF: hwrfdomain_wrapper,
geogrid_wrapper, ungrib_wrapper and metgrid_wrapper. These wrapper scripts drive
the four corresponding low-level scripts, hwrfdomain.ksh, geogrid.ksh, ungrib.ksh and
metgrid.ksh, respectively. Script hwrfdomain.ksh defines the location of the parent
domain; geogrid.ksh interpolates static geographical data to the three HWRF domains;
ungrib.ksh extracts meteorological fields from GRIB-formatted files and writes the fields
to intermediate files, and metgrid.ksh horizontally interpolates the meteorological fields
extracted by ungrib.ksh to the HWRF parent domain. The wrapper scripts can be found in
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts

Before running the wrappers, users need to edit file global_vars.ksh and make sure that
the list of global variables is correctly customized for the desired HWRF run. Note if the
user wants a wrapper script to output detailed debug information in the standard output
(stdout), he can define an environment variable, DEBUG, in the wrapper script by adding
the following statement:

export DEBUG=1

 45

3.2.1 hwrfdomain_wrapper

Before running hwrfdomain_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix):

HWRF_SCRIPTS
SID
START_TIME
TCVITALS
DOMAIN_DATA

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:
hwrfdomain_wrapper, which, in turn, will run the low-level script
hwrf-utilities/scripts/hwrfdomain.ksh.

Overview of script hwrfdomain.ksh:

1. Initialize the function library and check to see if all the environment variables
are set.

2. Create a working directory, which is ${DOMAIN_DATA}/messages.
3. Create the tcvital and tcvitals.as files.
4. Get the storm center latitude and longitude from the TCVitals record.
5. Compute the reference latitude and longitude for the HWRF parent domain

using the storm center.
6. Test to make sure that the reference longitude is no more than 5 degrees away

from the storm center longitude.
7. Output the storm center to file storm.center.
8. Output the center of the parent domain to file domain.center.

 Output files in directory	 ${DOMAIN_HOME}/messages	 	

1. storm.center: file that contains the storm center latitude and longitude.
2. domain.center: file that contains the domain reference center latitude and

longitude.
3. tcvital: file that contains the storm’s tcvital record.
4. tcvital.as: file that contains the storm’s tcvital record.

 Status Check

If the four output files are found in the directory of ${DOMAIN_DATA}/messages,
the wrapper script hwrfdomain_wrapper and the low-level script hwrfdomain.ksh
have finished successfully.

 46

3.2.2 geogrid_wrapper

Before running geogrid_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
WPS_ROOT
DOMAIN_DATA
GEOGRID_CORES
FCST_LENGTH
GEOG_DATA_PATH
HWRF_UTILITIES_ROOT
ATMOS_DOMAINS
IO_FMT

First use the qrsh command to connect to the computer’s remote computation nodes (see
Section 1.6). Note the number of processors the user should connect to is defined in
global_vars.ksh as GEOGRID_CORES.

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:
geogrid_wrapper, which, in turn, will run the low-level script
hwrf-utilities/scripts/geogrid.ksh.

Overview of script geogrid.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the geogrid.exe executable exists.
2. Create	 the	 working	 directory	 ${DOMAIN_DATA}/geoprd.	
3. Create the namelist and copy the geogrid table file.
4. Run geogrid.exe to generate the geographical data.

Output	 files	 in	 directory	 ${DOMAIN_DATA}/geogrid	 	
1. geo_nmm.d01.nc: static geographical data for the parent domain, with a grid

spacing of 0.18 degrees.
2. geo_nmm_nest.l01.nc: static geographical data that covers the parent domain,

with a grid spacing of 0.06 degrees.
 3. geo_nmm_nest.l02.nc: static geographical data that covers the parent domain,
 with a grid spacing of 0.02 degrees. Status check

If “Successful completion of program geogrid.exe” is found in the standard output
files, ${DOMAIN_DATA}/geoprd/geogrid.log.*, the wrapper script
geogrid_wrapper and the low-level script geogrid.ksh have successfully finished.

 47

3.2.3 ungrib_wrapper

Before running ungrib_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
WPS_ROOT
START_TIME
FCST_LENGTH
HWRF_UTILITIES_ROOT
DOMAIN_DATA
GFS_GRIDDED_DIR

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:
ungrib_wrapper, which, in turn, will run the low-level script
hwrf-utilities/scripts/ungrib.ksh.

Overview of script ungrib.ksh

1. Initialize the function library and check to see if all the environment variables
are set and the ungrib.exe executable exists.

2. Create and enter a work directory ${DOMAIN_DATA}/ungribprd.
3. Create the namelist used by ungrib.exe.
4. Copy the ungrib table.
5. Link the grib files.
6. Run ungrib.

Output files in directory ${DOMAIN_DATA}/ungribprd
The intermediate files written by ungrib.exe will have names of the form
FILE:YYYY-MM-DD_HH (unless the prefix variable in namelist.wps was set to a
prefix other than ’FILE’).

Status check
If “Successful completion of program ungrib.exe” is found in the standard output
file, ${DOMAIN_DATA}/ungribprd/ungrib.log, the wrapper script
ungrib_wrapper and the low-level script ungrib.ksh have successfully finished.

3.2.4 metgrid_wrapper

Before running metgrid_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

 48

HWRF_SCRIPTS
WPS_ROOT
DOMAIN_DATA
METGRID_CORES
START_TIME
FCST_LENGTH
GEOG_DATA_PATH
HWRF_UTILITIES_ROOT
IO_FMT

Next use the qrsh command to connect to the computer’s remote computation nodes
(see Section 1.6). Note the number of processors the user should connect to is defined in
global_vars.ksh as METGRID_CORES.

Then run the wrapper script in hwrf-utilities/wrapper_scripts using the command:
metgrid_wrapper, which, in turn, will run the low-level script
hwrf-utilities/scripts/metgrid.ksh.

Overview of script metgrid.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the metgrid.exe executable exists.
2. Create and enter a work directory ${DOMAIN_DATA}/metgridprd.
3. Create the namelist used by metgrid.exe.
4. Copy the metgrid table.
5. Copy in the geogrid output files.
6. Copy in the ungrib output files.
7. Run metgrid.exe.

Output files in directory	 ${DOMAIN_DATA}/metgridprd
met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc. Here, YYYY- MM-DD_HH:mm:ss
refers to the date of the interpolated data in each file.

Status Check
If “Successful completion of program metgrid.exe” is found in the standard output
file, ${DOMAIN_DATA}/metgridprd/metgrid.log, the wrapper script
metgrid_wrapper and the low-level script metgrid.ksh have successfully finished.

 49

3.1 Executables
3.3.1 geogrid.exe

FUNCTION:
interpolates static geographical data to the parent and nest grids.

INPUT:
Files in geographical static data directory (for example,${GEOG_DATA_PATH})
GEOGRID.TBL
WPS namelist

OUTPUT:
geo_nmm.d01.nc: static geographical data for the parent domain, with a grid
spacing of 0.18 degrees.
geo_nmm_nest.l01.nc: static geographical data that covers the parent domain,
with a grid spacing of 0.06 degrees.
geo_nmm_nest.l02.nc: static geographical data that covers the parent domain,
with a grid spacing of 0.02 degrees.

USAGE:
${WPS_ROOT}/geogrid.exe

3.3.2 ungrib.exe

FUNCTION:
extracts meteorological fields from GRIB formatted files and writes the fields to
intermediate files.

INPUT:
GFS GRIB files
Vtable
WPS namelist

OUTPUT:
The intermediate files written by ungrib.exe will have names of the form
FILE:YYYY-MM-DD_HH (unless the prefix variable was set to a prefix other than
’FILE’ in WPS namelist).

USAGE:
${WPS_ROOT}/ungrib.exe

 50

3.3.3 metgrid.exe

FUNCTION:
horizontally interpolates the meteorological fields extracted by ungrib.ksh to the
model parent grid.

INPUT:
METGRID.TBL
geo_nmm.d01.nc
WPS namelist
intermediate files produced by ungrib.exe

OUTPUT:
met_nmm.d01.YYYY-MM-DD_HH:mm:ss.nc. Here, YYYY- MM-DD_HH:mm:ss
refers to the date of the interpolated data in each file.

USAGE:
${WPS_ROOT}/metgrid.exe

3.4 Algorithm to Define the HWRF Domain Using the
Storm Center Location

In order to define the domain configuration for HWRF, ref_lat and ref_lon in the
“geogrid” namelist record are calculated according to the observed and predicted location
of the storm to be simulated. Script hwrfdomain.ksh reads the TCVitals records and
retrieves the storm center location. NHC and JTWC are the two agencies that provide the
TCVitals - a one line text message that contains information on storm name, id, time,
location, intensity, and 72-h forecast position (if available) apart from many other
parameters used to describe the storm.

In the first step, the storm center at the initial time (STORM_LAT and STORM_LON) is
read from the TCVitals file. If a 72-h forecast position is available, LATF72 and
LONF72 are also read in. The domain center is treated differently for latitude and
longitude.

a) For domain center latitude (CENLA):

if STORM_LAT < 15.0 then CENLA=15.0
if 15.0 ≤ STORM_LAT ≤ 25.0 then CENLA=STORM_LAT
if 25.0 < STORM_LAT < 35.0 then CENLA=25.0
if 35.0 ≤ STORM_LAT < 40.0 then CENLA=30.0
if 40.0 ≤ STORM_LAT < 45.0 then CENLA=35.0
if 45.0 ≤ STORM_LAT < 50.0 then CENLA=40.0

 51

if 50.0 ≤ STORM_LAT < 55.0 then CENLA=45.0
if STORM_LAT ≥ 55.0 then CENLA=50.0

b) For domain center longitude (CENLO):
The domain center longitude is the average of storm center (STORM_LON) and
the 72-h forecast longitude (LONF72). In the absence of 72-h forecast, 20 degrees
are added to STORM_LON to create LONF72.
CENT = (STORM_LON + LONF72)
CENTAVG=CENT / 2
CENLO =-CENTAVG / 10
To assure that the domain center is separated from the storm center by at least 5
degrees, the following procedure is followed:
if CENLO > STORM_LON+5 then CENLO= STORM_LON + 5
if CENLO < STORM_LON- 5 then CENLO= STORM_LON - 5

Finally, the values of CENLA and CENLO are written to the namelist.wps as ref_lat and
ref_lon.

3.5 HWRF Domain Wizard

The WRF Domain Wizard has the capability of setting up the HWRF domain, and
running gogrid, ungrib and metgrid. For more information about the WRF Domain
Wizard, see	

http://www.wrfportal.org/DomainWizard.html

 52

Chapter 4: Vortex Initialization

4.1 Overview

The initial vortex is often not realistically represented in a high-resolution mesoscale
model when the initial conditions are generated from a low-resolution global model, such
as GFS. To address this issue, HWRF employs a sophisticated algorithm to initialize the
hurricane vortex. The HWRF initialization processes are illustrated in Figure 4.1.

Before the vortex initialization scripts are run, the user needs to run the wrapper script
real_wrapper to produce the preliminary initial and boundary conditions for the parent
domain. These preliminary initial conditions are then further modified by the vortex
initialization and data assimilation procedures. To do that, WRF is run twice, once using
the same domains employed for the coupled model forecast (this is referred to as the
analysis run and uses the wrapper script wrfanalysis_wrapper), and once for the ghost
domains (using the wrapper script wrfghost_wrapper) (see the HWRF domains in Figure
4.2). The two WRF runs are both 90-second runs. The purpose of these two WRF runs is
to obtain the initial fields on the analysis (wrfanl_d02, wrfanl_d03) and ghost domains
(wrfghost_d02, wrfghost_d03), respectively. These files are used in the subsequent vortex
initialization and GSI procedures. The ghost domains are only used for initialization and
are not employed in the actual forecast. The wrapper script track_analysis_wrapper is
used to run the post-processor and GFDL vortex tracker on the WRF analysis output to
identify the center of the storm in the GFS analysis, which is used later in the vortex
relocation procedures.

The HWRF vortex initialization process has three stages. First a check is performed to
see if a previous 6-hr forecast exists and the storm’s maximum wind is larger than
12 ms-1. If so, this is a cycled run; otherwise it is a "cold start". For a cold start run, an
axi-symmetric bogus vortex is used and adjusted according to the TCVitals. A cycled run
will go through all the three stages, while a "cold start" run will go through stages 2 and 3
only.

1. Stage 1: Since the operational HWRF forecasts are run in cycles, a previous
cycle 6-hr HWRF forecast is separated into environment fields and a storm
vortex. This step is run only for cycled cases.

2. Stage 2: The preliminary initial condition generated from the GFS data using
WPS, real, and the WRF ghost and analysis runs is separated into environment
fields and a storm vortex.

 53

3. Stage 3: The storm vortex from the previous 6-hr forecast (for cycled runs) or
from a bogus vortex (for cold start and cycled runs when the forecast storm is
weaker than the observed one) is adjusted in its intensity and structure to
match the current time observed hurricane center location, intensity and
structure information. The new vortex is added to the environment fields
obtained from the GFS data to form the new initial condition that is used in
HWRF forecast.

After the 3 stages, the new vortex is created. Next, GSI (a 3D-VAR data assimilation
system) is used to assimilate observational upper-level and surface conventional
observations into the HWRF atmospheric model’s initial condition background fields.
Satellite radiance data are not used in the 2012 HWRF forecasts. GSI is run
independently in the parent domain and in the inner nest of the WRF ghost run. After
the two GSI runs, wrapper script merge_wrapper is used to generate the final initial
conditions for the coupled HWRF forecast.

Figure 4.1. HWRF operational initialization flowchart.

 54

4.2 Domains Used in HWRF

The following domain grids are used in HWRF vortex initialization process (Figure 4.2
and Table 4.1).

 D01 D02 D03
Grid spacing (deg) 0.18 0.06 0.02
Coupled Forecast 216x432 - 80ox80o 88x170 - 11ox10o 154x272 - 6.0ox5.5o
Analysis run 216x432 - 80ox80o 88x170 - 11ox10o 154x272 - 6.0ox5.5o
Ghost run 216x432 - 80ox80o 211x410 - 24ox24o 529x988 - 20ox20o
3X domain 748x1504 - 30ox30o

Table 4.1. Resolution and number of grid points for the HWRF atmospheric grids.

Notes

1. Although during the WRF ghost runs output data is generated on domains one
and two (see Section 4.3.3), these files are not used later.

2. The ghost domain three is mainly used for GSI data analysis. This domain is
not used during the model integration. GSI is run twice, once for the outer
domain, and once for the ghost domain three.

3. The 3X domain is used to remove the GFS vortex, then extract and correct the
storm vortex from the previous 6-hr forecast. The domain is large enough so
that the GFS vortex is completely filtered out and a complete storm vortex
from the previous 6-hr forecast is extracted, yet small enough to save
computing resources. This domain is not used during the model integration and
only exists inside the vortex initialization code.

4. The ocean model grid placement depends on the position of the observed and
72-hr NHC forecast of the observed storm. As an example, in Figure 4.2 the
cyan box shows the “united” ocean model domain grid, which is used in the
forecast of hurricane Irene initialized at 12 UTC on 23 August 2011. The
“united” ocean model grid covers the area 10N-47.5N and 98.5W-60W.

 55

Figure 4.2. The domains used in HWRF.

4.3 How to Run the Vortex Initialization Using Scripts

The HWRF vortex initialization scripts come in the tarfile hwrfv3.4a_utilities.tar and,
following the procedures outlined in Chapters 1 and 2, will be expanded in the directories
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts and ${SCRATCH}/HWRF/hwrf-
utilities/scripts.

Note the executables called in scripts real.ksh, wrf.ksh, run_gsi.ksh are parallel codes,
and if they need to be submitted with a batch system, the users are responsible for
understanding the batch system commands for the machine and infrastructure where the
HWRF system is run. For the batch system commands for IBM/AIX (LSF) and
Intel/Linux (SGE) systems, please see Section 1.6.

4.3.1 real_wrapper

Before running real_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

 56

HWRF_SCRIPTS
WRF_ROOT
HWRF_UTILITIES_ROOT
REAL_CORES
FCST_LENGTH
GFS_GRIDDED_DIR
DOMAIN_DATA

Next use the qrsh command to connect to the computer’s remote computation nodes (see
Section 1.6). Note the number of processors the user should connect to is defined in
global_vars.ksh as REAL_CORES.

Then run the wrapper script hwrf-utilities/wrapper_scripts/real_wrapper by typing the
name of the script in the terminal, which, in turn, will run the low-level script
hwrf-utilities/scripts/real.ksh. This will read in the output from the WPS executable
metgrid.exe and generate wrfinput_d01, wrfbdy_d01 and fort.65.

Overview of script real.ksh:

1. Initialize the function library and check to see if all the environment variables

are set and the executables real_nmm.exe, wgrib and
hwrf_swcorner_dynamic.exe exist.

2. Create and enter the work directory realprd.
3. Link input and fix files.
4. Run hwrf_swcorner_dynamic.exe to calculate the nest domain location.
5. Generate the namelist.
6. Run real_nmm.exe to generate initial and boundary conditions. A high-

resolution sea-mask data file (fort.65) for the entire outer domain is also
generated. It is later used by the coupler.

Note: to run real.ksh successfully, users should set the computer’s stacksize to be
equal to or larger than 2 GB. To do this:

In bash shell, use the command ulimit –s 204800.
In C-shell, use the command limit stacksize 2048m.

Output files in directory ${DOMAIN_DATA}/realprd:
wrfinput_d01 (initial condition)
wrfbdy_d01 (boundary condition)
fort.65 (high-resolution sea mask data)

Status Check
This step was successfully finished if the user finds “SUCCESS COMPLETE
REAL” in files rsl.*

 57

4.3.2 wrfanalysis_wrapper

Before running wrfanalysis_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
WRF_ROOT
HWRF_UTILITIES_ROOT
START_TIME
ATMOS_DOMAINS
FCST_LENGTH
FCST_INTERVAL
DOMAIN_DATA

Note that in the wrapper script wrfanalysis_wrapper, the following two variables are
defined.

WRF_MODE = analysis

WRF_CORES =4

WRF_MODE should not be altered but WRF_CORES can be customized to set the
number of processors for the WRF analysis run.

Next, use the qrsh command to connect to the computer’s remote computation nodes (see
1.6). Note the number of processors the user should connect to is defined by
WRF_CORES.

Then run the wrapper script hwrf-utilities/wrapper_scripts/wrfanalysis_wrapper, which,
in turn, will run the low-level script hwrf-utilities/scripts/wrf.ksh. This will make a 90
second run of wrf.exe and generate an analysis output for the middle and inner nest
domains.

Overview of script wrf.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the wrf.exe and hwrf_swcorner_dynamic.exe executables exist.
2. Create and enter the work directory wrfanalysisprd.
3. Link the fix data, initial condition and boundary conditions.
4. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for

the middle nest domain grid and create a namelist.input file.
5. Run wrf.exe.

 58

Output files in the directory ${DOMAIN_DATA}/wrfanalysisprd

"wrfanl_d02*" and "wrfanl_d03*" are two "analysis" files for the HWRF middle
and inner nest domains.

Status Check

This step was successfully finished if the user finds “ SUCCESS COMPLETE
WRF” in files rsl.*

4.3.3 wrfghost_wrapper

Before running wrfghost_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
WRF_ROOT
HWRF_UTILITIES_ROOT
START_TIME
ATMOS_DOMAINS
FCST_LENGTH
FCST_INTERVAL
DOMAIN_DATA

Note that in the wrapper script wrfghost_wrapper, the following two variables are
defined.

WRF_MODE = ghost

WRF_CORES =12

WRF_MODE should not be altered but WRF_CORES can be customized to set the
number of processors for the WRF ghost run.

Next use the qrsh command to connect to the computer’s remote computation nodes (see
Section 1.6). Note the number of processors the user should connect to is defined as
WRF_CORES.

After the connection between the user and the computation nodes established, the user
can run the wrapper script hwrf-utilities/wrapper_scripts/wrfghost_wrapper by typing the
name of the wrapper script, which, in turn, will run the low-level script hwrf-
utilities/scripts/wrf.ksh.

This will make a 90 second run of wrf.exe and generate output for the middle and inner
“ghost” domains (see Figure 4.2). These “ghost” domains are used only in GSI data
assimilation procedures (see Section 4.3.9).

 59

Overview of script wrf.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the wrf.exe and hwrf_swcorner_dynamic.exe executables exist.
2. Create and enter the work directory wrfghostprd.
3. Link the fix data, initial condition, and boundary conditions.
4. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for the

middle “ghost” domain grid and create a namelist.input file.
5. Run wrf.exe.

Output files in the directory ${DOMAIN_DATA}/wrfghostprd

 "ghost_d02*" and "ghost_d03*", two “analysis” files for the HWRF middle and
inner “ghost” domains.

Status Check

This step was successfully finished if the user finds “SUCCESS COMPLETE
WRF” in files rsl.*

4.3.4 track_analysis_wrapper

Before running track_analysis_wrapper, check global_vars.ksh to make sure the
following variables are correctly defined (see Appendix).

HWRF_SCRIPTS
UPP_ROOT
HWRF_UTILITIES_ROOT
TRACKER_ROOT
DOMAIN_DATA
START_TIME
SID

Then run track_analysis_wrapper by typing the name of the wrapper script, which, in
turn, will run the low-level script track_analysis.ksh. This script will run unipost.exe and
copygb.exe to interpolate the WRF analysis run (Section 4.3.2) wrfout_d01 horizontally
to a regular lat/lon grid and vertically to isobaric levels, and to output a file in GRIB
format. Then the GFDL vortex tracker is run to identify the center of the storm (see
Figure 4.4).

Overview of script track_analysis.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.

 60

2. Create the work directory, enter it and copy the unipost fix files and the
wrfout_d01 file from the WRF analysis 90 s run.

3. Run hwrf_wrfout_newtime.exe to change the time stamp in this wrfout_d01 to
t=0. This is needed because the GFDL vortex tracker requires tracking from
the beginning of the forecast.

4. Run unipost.exe to post-process the wrfout_d01 file.
5. Run copygb.exe to horizontally interpolate the unipost.exe output to a regular

lat/lon grid.
6. Run the GFDL vortex tracker.

Output files in directory ${DOMAIN_DATA}/trkanalysisprd
gfs-anl-fix.atcfunix (storm center at initial time in the WRF analysis run output)

Status Check:
If “failed” is not found in the standard output (stdout) and file gfs-anl-fix.atcfunix
exists, the wrapper script track_analysis_wrapper and the low-level script
track_analysis.ksh runs were successful.

4.3.5 relocate1_wrapper

Before running relocate1_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix):

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
DOMAIN_DATA
CYCLE_DATA
START_TIME
IO_FMT
FCST_INTERVAL
ATCFNAME
SID

Then run the wrapper script relocate1_wrapper by typing its name on the terminal,
which, in turn, will run the low-level script relocate_stage1_3d.ksh. If a previous 6-hr
forecast exists and the observed storm maximum wind speed is greater than 12 ms-1 (a
cycled run), the previous forecast will be interpolated onto the 3X domain and separated
into environment fields and storm vortex fields (Figure 4.5). The storm vortex fields will
be adjusted. The 3X domain is about 30x30 degrees with the resolution of the inner nest
domain and is centered based on the NHC storm message data (see Figure 4.2). Be aware
that the 3X (30x30o) domain is sometimes referred to in the source code or in executable
names as the 4X domain. This is a legacy from the 2011 configuration of HWRF in
which this domain had 40x40odimensions.

Note in the script relocate_stage1.ksh, the gnu version of the command “date” is used.

 61

Overview of script relocate_stage1_3d.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.
2. Create the work directory, enter it and copy fixed files and namelist.
3. Check to see if the previous cycle forecast exists and the storm intensity is

greater than 12 ms-1; if not, exit.
4. Run diffwrf_3dvar.exe to convert the previous cycle forecast output

wrfout_d01, wrfout_d02 and wrfout_d03 into unformatted data files
old_hwrf_d01, old_hwrf_d02 and old_hwrf_d03 respectively.

5. Run merge_nest_4x_step12_3n.exe to merge wrfout_d01, wrfout_d02 and
wrfout_d03 onto 3X domain and produce a file containing the merged data:
data_4x_hwrf.

6. Run hwrf_create_trak_guess.exe to produce a guess track (0,3,6,9 hour) for
the current forecast using previous cycle forecast track.

7. Run wrf_split1.exe to separate data_4x_hwrf into two parts: an environment
field (wrf_env) and a storm vortex (storm_pert). A storm radius data file
(storm_radius) is also generated.

8. Run hwrf_pert_ct1.exe to do adjustments to storm_pert. The new storm
vortex data (storm_pert_new) as well as two files containing the storm size
information (storm_size_p) and the symmetric part of the vortex (storm_sym)
are generated.

Output files in directory ${DOMAIN_DATA}/relocateprd:
storm_size_p (storm size information)
storm_pert_new (new storm vortex after adjustments by hwrf_pert_ct.exe)
storm_sym (symmetric part of the vortex)
storm_radius (storm radius information)
wrf_env (environment field)

Status Check:
If “failed” is not found in the standard output (stdout) and the files listed above
exist, the wrapper script relocate1_wrapper and the low-level script
relocate_stage1_3d.ksh runs were successful.

4.3.6 relocate2_wrapper

Before running relocate2_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
DOMAIN_DATA
START_TIME
IO_FMT

 62

FCST_INTERVAL
START_TIME
GFS_GRIDDED_DIR
SID

Then run the wrapper script relocate2_wrapper by typing its name in the terminal. This
will merge the outer nest, inner nest, and ghost nest domain initial fields onto a 3X
domain grid. The merged fields will be separated into environment fields and storm
vortex (see Figure 4.6).

Overview of script relocate_stage2.ksh
1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.
2. Enter the work directory and copy needed fix files and namelist.
3. Run diffwrf_3dvar.exe to convert wrfinput_d01, wrfanl_d02, wrfanl_d03 and

wrfghost_d02 (copied from wrfghost_d03) into binary files new_gfs_d01,
new_gfs_d02, new_gfs_d03 and new_ght_d02, respectively.

4. Run hwrf_create_nest_1x_10m.exe to rebalance the inner nest domain data.
This will generate the data file new_gfs_d01 that contains the rebalanced
outer and inner domain data.

5. Run hwrf_create_trak_fnl.exe to create trak.fnl.all_gfs, a guess track file from
atcfunix.

 For example, for a forecast of hurricane Irene starting at 12 UTC on
8/23/2011, the storm ID is 09L, file atcfunix shows the following storm
information:

AL, 09, 2011082312, 03, HWRF, 000, 207N, 706W, 54, 991, XX, 34, NEQ,

0168, 0138, 0060, 0158, 0, 0, 60;
AL, 09, 2011082312, 03, HWRF, 000, 207N, 706W, 54, 991, XX, 50, NEQ,

0081, 0000, 0000, 0052, 0, 0, 60;

 and the guess track file should be in the following form:

 72HDAS11082312 207 706 207 706 207 706 207 706 0 0 0 0 0 0 09L

 where ' 72HDAS' is a fixed field, 11082312 means 08/23/2011 12 UTC, 207

and 706 are the latitude and longitude multiplied by 10 (20.7N and 70.6W),
and 09L is the storm ID.

6. Run hwrf_merge_nest_4x_step12_3n.exe to merge inner domain
(new_gfs_d03) , middle domain (new_gfs_d02), and outer domain
(new_gfs_d01) onto the 3X domain. This will generate the file containing the
merged data on the 3X domain (data_4x_gfs) and a file containing sea mask
and roughness length data (roughness2).
Run hwrf_split1.exe to separate the data_4x_gfs into environment data
(gfs_env) and storm vortex (storm_pert_gfs). A file containing the storm's
radius information will be generated too (storm_radius_gfs).

 63

Output files in the directory ${DOMAIN_HOME}/relocateprd:
gfs_env : environment fields from GFS data
roughness2: sea mask and roughness length from GFS data
storm_pert_gfs: storm vortex from GFS data
storm_radius_gfs: storm radius information from GFS data

Status Check:
If “failed” is not found in the standard output (stdout) and the files listed above
exist, the wrapper script relocate2_wrapper and the low-level script
relocate_stage2.ksh runs were successful.

4.3.7 relocate3_wrapper

Before running relocate3_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
DOMAIN_DATA
USE_GSI
FCST_INTERVAL
ATMOS_DOMAINS
IO_FMT

Then run the wrapper script relocate3_wrapper by typing its name in a terminal, which in
turn will run the low-level script relocate_stage3.ksh. This will create a new storm vortex
by adjusting the previous cycle 6-hr forecast vortex (for a cycled run) or a bogus vortex
(for a cold start or a cycled run) to match the observed storm location, intensity and
structure (see Figures 4.7 and 4.8).

Overview of script relocate_stage3.ksh:
1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.
2. Enter the work directory.
3. For cold start runs (previous cycle 6-hr forecast does not exist or the observed

storm’s maximum wind is less than 12 ms-1), run hwrf_anl_bogus_10m.exe to
create a bogus storm and add into the environmental flow on the 3X domain
grid. This will generate new_data_4x.

4. For cycled runs (previous cycle 6-hr forecast exists and the storm’s maximum
wind is larger than or equal to 12 ms-1),
a. Run hwrf_anl_4x_step2.exe to adjust the storm vortex obtained in stage 1

(storm_pert_new) and add the new storm vortex to the environment flow
(gfs_env) on the 3X domain grid. This will produce a new file
(new_data_4x) containing the combined environment flow and the
adjusted storm vortex.

 64

b. If the maximum wind speed of the combined vortex + environmental flow
is less than the observed one, discard the file new_data_4x generated in
step 2 and run hwrf_anl_cs_10m.exe to further adjust the vortex. This
will produce a new version of new_data_4x that contains the combined
environment flow and the adjusted storm vortex.

5. Run hwrf_inter_4to6.exe to interpolate the new_data_4x from the 3X domain
onto the outer domain grid. This will produce the new data_merge_d01. In
this step, the only difference between cold start and cycled runs is that for the
storm radius information, the file storm_radius is used for cycled runs and
storm_radius_gfs is used for cold start runs.

6. Run hwrf_inter_4to2.exe to interpolate the new_data_4x from the 3X domain
onto the ghost domain grid. This will produce the new data_merge_2x.

7. Run diffwrf_3dvar.exe to convert the unformatted data_merge_d01 to the
netCDF file wrfinput_d01.

8. Run diffwrf_3dvar.exe to convert the unformatted data_merge_2x to the
netCDF file wrfghost_d02.

9. Decide if GSI will be run based on environmental variable set by the user. By
default, GSI I is run for all storms as in the 2012 operational implementation.

Output files in the directory ${DOMAIN_HOME}/relocateprd:

wrfinput_d01: Adjusted parent domain fields that contains both the vortex and
the environment
wrfghost_d02: Adjusted ghost domain fields that contains both the vortex and the
environment

Status Check:
If “failed” is not found in the standard output (stdout) and the files listed above
exist, the script relocate3_wrapper run was successful.

4.3.8 gsi_wrapper

Before	 running	 gsi_wrapper,	 check	 global_vars.ksh	 to	 make	 sure	 the	 following	
variables	 are	 correctly	 defined	 (see	 Appendix).	
	

HWRF_SCRIPT
GSI_ROOT
HWRF_UTILITIES_ROOT
DOMAIN_DATA
PREPBUFR
OBS_ROOT
START_TIME
FIX_ROOT
CYCLE_DATA
BK_DIR
IO_FORMAT

 65

GSI_CORES

Note that in the wrapper script gsi_wrapper, an additional environment variable,
DOMAIN, is defined. The wrapper has a loop and DOMAIN assumes the values
wrfinput and wrfghost so that GSI can be run for both domains.

Next use the qrsh command to connect to the computer’s remote computation nodes (see
Section 1.6). Note the number of processors the user should connect to is defined as
GSI_CORES.

Then run the wrapper script gsi_wrapper, which in turn will run the low-level script
run_gsi.ksh twice, one for the parent domain, the other for the ghost inner nest (Figure
4.9).

 Overview of script run_gsi.ksh

1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.
2. Create and enter the work directory.
3. Check the endianness.
4. Reverse the endianness of data if using NCEP prepBUFR data (big_endian) on

machines with little_endian (e.g. Linux).
5. Remove the observational data near the storm center.
6. Copy the fixed data and background analysis to the working directory.
7. Create a namelist for GSI analysis.
8. Run the executable gsi.exe

Output files in directory ${DOMAIN_HOME}/gsiprd:stdout:
Standard text output file. It is the file most often used to check the GSI analysis
processes as it contains basic and important information about the analyses.

wrf_inout:
Analysis results - the format is same as the input background file.

Status Check:

If you see “PROGRAM GSI_ANL HAS ENDED” in the file stdout, the script
run_gsi.ksh has run successfully.

For more information on checking GSI output, refer to the GSI User’s Guide
(http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.1.pdf).

4.3.9 merge_wrapper

Before running merge_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

 66

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
DOMAIN_DATA
ATMOS_DOMAINS
IO_FMT
FCST_INTERVAL
START_TIME

Then run the wrapper script merge_wrapper by typing its name in a terminal, which in
turn will run the low-level script merge.ksh. If the GSI analysis was run, this will update
the HWRF initial conditions using the GSI analysis. If the GSI analysis was not run, the
initial conditions are created from the vortex relocation stage 3.

Overview of script merge.ksh:
Initialize the function library and check to see if all the environment variables are
set and the executables exist.
1. Create and enter the work directory.
2. Copy the input analysis files. If GSI was run, the input files for the parent and

ghost domains will be from the GSI output in the directory gsiprd, otherwise
they will be from the relocation stage 3 output in the directory relocateprd.
The input analysis file for the 3rd domain will be from the directory
relocateprd.

3. Copy the namelist.
4. Run diffwrf_3dvar.exe to convert the netCDF format wrfinput_d01,

wrfinput_d02, wrfinput_d03, and wrfghost_d02 to unformatted data files
new_hdas_d01, new_gfs_d02, new_gfs_d03, and new_ght_d02, respectively.

5. Run hwrf_inter_2to6.exe to interpolate the files new_hdas_d01, new_gfs_d02,
and new_ght_d02 to the outer domain grid. This will produce the merged data
on the outer domain grid (data_merge_d01).

6. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d02 and
new_gfs_d03 to the inner nest domain grid. This will produce the merged data
on the inner nest grid (data_merge_d03).

7. Run hwrf_inter_2to2.exe to interpolate the data in file new_ght_d02,
new_gfs_d02, and new_hdas_d01 to the middle nest domain grid d02. This
will produce the merged data on the inner nest grid (data_merge_d02).

8. Run diffwrf_3dvar.exe to convert the unformatted files data_merge_d01,
data_merge_d02, and data_merge_d03 to the netCDF format files
wrfinput_d01, wrfinput_d02, and wrfinput_d03, respectively.

9. Rename wrfinput_d02 and wrfinput_d03 to wrfanl_d02 and wrfanl_d03
respectively.

10. wrfinput_d01, wrfanl_d02 and wrfanl_d03 are ready to be used by wrf.exe to
do the hurricane forecast.

 67

Output files in the directory ${DOMAIN_HOME}/mergeprd:
wrfinput_d01: initial condition for the outer domain containing the new vortex
wrfanl_d02_${YYYY-MM-DD}_00:00:00: initial condition for the middle nest
domain containing the new vortex. ${YYYY-MM-DD} is the model run’s initial
time.
wrfanl_d03_${YYYY-MM-DD}_00:00:00: initial condition for the inner nest
domain containing the new vortex. ${YYYY-MM-DD} is the model run’s initial
time.

Status Check:
If you do not see “failed” in the file stdout and the above mentioned output files
are generated, the wrapper script merge_wrapper and the low-level script
merge.ksh have run successfully.

Figure 4.3. HWRF initialization procedures before vortex adjustments. Note that only
the output files that are used in subsequent runs are shown.

 68

Figure 4.4. Diagram of the procedure to generate information about the storm location
in the GFS input data. The color coding is described in Figure 4.3.

 69

Figure 4.5. Diagram of HWRF vortex initialization Stage 1 procedures. The color coding
is described in Figure 4.3.

 70

Figure 4.6. Diagram of HWRF vortex initialization Stage 2 procedures. The color coding
is described in Fig. 4.3.

 71

Figure 4.7. Diagram of HWRF vortex initialization Stage 3 procedures. The color
coding is described in Figure 4.3.

 72

Figure 4.8. Diagram of HWRF vortex initialization Stage 3 final procedures. The
color coding is described in Figure 4.3.

 73

Figure 4.9. Diagram of HWRF vortex initialization GSI procedures. The color coding is
described in Figure 4.3.

 74

Figure 4.10. Diagram of HWRF vortex initialization merge procedures. The color
coding is described in Figure 4.3.

 75

4.4 HWRF Vortex Initialization Executables

4.4.1 copygb.exe

See Section 7.4.2.

4.4.2 diffwrf_3dvar.exe

a) FUNCTION:
Converts netCDF input to unformatted file (when first argument is
"storm_relocate").

INPUT:
netCDF format input files (for example wrfinput_d01) or previous cycle 6-hr
forecast.

OUTPUT:
unformatted data file.

USAGE:
diffwrf_3dvar.exe storm_relocate input_file flnm3 output_file
The command above writes the WRF input file input_file into an unformatted
file, output_file, which will be used in the vortex relocation procedures.

b) FUNCTION:
Updates existing netCDF file with new unformatted file (when first argument is
"3dvar_update").

INPUT:
Unformatted file containing new vortex fields.

OUTPUT:
Updated netCDF file.

USAGE:

 diffwrf_3dvar.exe 3dvar_update input_file output_file
The command above updates input_file with unformatted file output_file, which
contains new vortex fields.

4.4.3 gettrk.exe

See Section 8.6.1.

 76

 4.4.4 gsi.exe

 FUNCTION:

Performs the GSI 3D-VAR data assimilation analysis.

 INPUT:
gsiparm.anl: gsi namelist, created by modifying
${HWRF_UTILITIES_ROOT}/parm/gsi_namelist.input
wrf_inout: background file, copied from ${BK_DIR}
prepbufr: conventional observation prepBUFR data, linked to ${PREPBUFR}.

fix files, from ${FIX_ROOT}, which is specified in hwrf-
utilities/wrapper_scripts/global_vars.ksh

OUTPUT:
wrf_inout: analysis results if GSI completes successfully. The format is the same
as the background file.

USAGE:

 On IBM/AIX machines: mpirun.lsf ./gsi.exe < gsiparm.anl
 On Intel/Linux: mpiexec –np 12 ./gsi.exe < gsiparm.anl

4.4.5 hwrf_anl_4x_step2.exe

FUNCTION:
Adjusts the storm vortex obtained in stage 1 (storm_pert_new) and adds the new
storm vortex to the environment flow (gfs_env) on the 3X domain grid.

INPUT:

 $gesfhr(=6)
 storm_size_p (fort.14) - input from stage 1
 tcvitals.as (fort.11) - storm center obs

hdas_atcfunix (fort.12) - input track file from previous 6-hr forecast
 gfs_env (fort.26) - GFS environmental flow
 storm_pert_new (fort.71) - adjusted storm perturbation from stage 1
 roughness1 (fort.46) - roughness from merge_nest_4x_step2
 storm_sym (fort.23) - symmetric part of storm

 OUTPUT:
 wrf_env_new (fort.36) - new environmental flow.
 new_data_4x (fort.56) - adjusted field on 3X domain.

 77

 USAGE:

echo $gesfhr | hwrf_anl_4x_step2.exe

4.4.6 hwrf_anl_bogus_10m.exe

 FUNCTION:

Creates a bogus storm and adds it to the environmental flow

INPUT:
 $gesfhr(=6)
 tcvitals.as (fort.11) – observed storm center
 gfs_env (fort.26) - GFS environmental flow
 data_4x_gfs (fort.36) - merged GFS inner/outer domain data
 storm_pert_gfs (fort.61) - separated GFS 3D vortex field
 roughness2 (fort.46) - roughness info for boundary layer calculation
 storm_radius_gfs (fort.85)
 hwrf_storm_cyn_axisy_47 (fort.71-75 and fort.78) input static vortex data

hwrf_storm_20 (fort.76-77)

OUTPUT:
 new_data_4x: combined environment flow and bogus field on the 3X domain

USAGE:
 echo	 $gesfhr	 |	 hwrf_anl_bogus_10m.exe	

4.4.7 hwrf_anl_cs_10m.exe

FUNCTION:
Further adjusts the storm vortex when combined vortex + environmental flow is
less than the observed maximum wind speed.

 INPUT:
 $gesfhr (=6)
 tcvitals.as (fort.11) – observed storm center
 wrf_env_new (fort.26) - new environmental flow (from hwrf_anl_4x_step2)
 storm_sym (fort.23) - symmetric part of storm (from stage 1)
 roughness (fort.46) - roughness info for boundary layer calculation

 (from hwrf_merge_nest_4x_step2.exe)
 storm_radius (fort.85) (from stage 1)
 hwrf_storm_cyn_axisy_47 (fort.75) input static vortex data

 78

OUTPUT:
test_data (fort.25)
new_data_4x (fort.56) - adjusted field on 3X domain when combined vortex +
environmental flow is less than the observed maximum wind speed - replaces
previous file.

 USAGE:
 echo $gesfhr | hwrf_anl_cs_10m.exe

4.4.8 hwrf_create_nest_1x_10m.exe

 FUNCTION:
Rebalances inner nest data.

 INPUT:
 $gesfhr(=6) is used to generate the input and output file unit numbers.
 new_gfs_d02 (fort.46)
 new_gfs_d01 (fort.26)

 OUTPUT:

new_data_d01(fort.57)- outer domain data interpolated to inner domain.
new_data_d01, which is renamed to new_gfs_d01

 USAGE:
 echo $gesfhr | hwrf_create_nest_1x_10m.exe

4.4.9 hwrf_create_trak_guess.exe

 FUNCTION:
 Guesses storm center from previous 6-hr forecast position.

 INPUT:
 $storm_id (storm ID)
 $ih (model initial hour)
 tcvitals.as (fort.11) – observed storm center
 hdas_atcfunix (fort.12) – track file from previous cycle 6-hr forecast.

 OUTPUT:
 trak.fnl.all (fort.30) - storm center guess (at 0,3,6 9 h)

 USAGE:

echo	 $storm_id	 $ih	 |	 hwrf_create_trak_guess.exe

 79

4.4.10 hwrf_data_remv.exe

FUNCTION:
Removes the observational data near storm center.

 INPUT:
fort.21 (prepbufr.ALL), the prepBUFR data before the observations are removed
near the storm center.
RLATC: storm center latitude
RLONC: storm center longitude
RRADC(=1200 km): radius within which data will be removed.

OUTPUT:
fort.51: prepbufr, the prepBUFR data after the observations are removed near the
storm center.

USAGE:
./hwrf_data_remv.exe

4.4.11 hwrf_inter_2to1.exe

 FUNCTION:

Interpolates from ghost d03 domain to inner nest domain.

INPUT:
 $gesfhr(=6)
 new_ght_d02 (fort.26) - data on ghost d03 domain.
 new_gfs_d03 (fort.36) – data on inner nest domain.

 OUTPUT:
 data_merge_d03 (fort.56) - interpolated data on inner domain.

 USAGE:
 echo ${gesfhr} | hwrf_inter_2to1.exe

4.4.12 hwrf_inter_2to2.exe

 FUNCTION:

Interpolates from ghost d03 domain to middle nest domain.

INPUT:
 $gesfhr(=6)
 new_ght_d02 (fort.26) - data on ghost d03 domain.
 new_gfs_d02 (fort.36) – data on middle nest domain.
 new_hdas_d01 (fort.46) – data on outer domain.

 80

 OUTPUT:
 data_merge_d02 (fort.56) - interpolated data on middle nest domain.

 USAGE:
 echo ${gesfhr} | hwrf_inter_2to2.exe

4.4.13 hwrf_inter_2to6.exe

 FUNCTION:

 Interpolates data from ghost domain to outer domain.

 INPUT:

$gesfhr (=6)
new_gfs_d02 (fort.26) – data on HWRF middle nest grid
new_ght_d02 (fort.36) - data on ghost d03 grid
new_hdas_d01 (fort.46) – data on outer domain grid
storm_radius (fort.85) - storm radius obtained from wrf_split1 in either stage 1
(cycled run) or stage 2 (cold start)

 OUTPUT:
 data_merge_d01 (fort.56) - interpolated data on outer domain.

 USAGE:

 echo $gesfhr | hwrf_inter_2to6.exe

4.4.14 hwrf_inter_4to2.exe

FUNCTION:
Interpolates from 3X domain onto ghost d02 domain.

INPUT:
$gesfhr (=6)
tcvitals.as (fort.11) - storm center obs
new_data_4x (fort.26) - adjusted storm on 3X domain
new_ght_d02 (fort.36) - ghost middle domain data

OUTPUT:
data_merge_2x (fort.56) - merged data on ghost d02 domain.

USAGE:
echo $gesfhr | hwrf_inter_4to2.exe

 81

4.4.15 hwrf_inter_4to6.exe

 FUNCTION:

Interpolates from 3X domain onto outer domain.

INPUT:
 $gesfhr
 tcvitals.as (fort.11) – observed storm center
 new_gfs_d01 (fort.26) - outer domain adjusted GFS data
 new_data_4x (fort.36) - adjusted storm
 new_gfs_d01 (fort.46) - outer domain adjusted GFS data
 storm_radius (fort.85)

 OUTPUT:
 data_merge_d01 (fort.56) - merged data on outer domain.

 USAGE:
 echo $gesfhr | hwrf_inter_4to6.exe

4.4.16 hwrf_merge_nest_4x_step12_3n.exe

FUNCTION:
Merges inner and outer domains onto a 3X domain.

 INPUT:

 $gesfhr(=6) $gesfhr last digit of the input/output file
 $st_int (the 68-69 characters in the tcvital.as)

$ibgs(=1) argument indicating if a cold start (ibgs=1) or a cycled run (ibgs=0)

tcvitals.as (fort.11) – observed storm center
old_hwrf_d01 or new_gfs_d01 (fort.26) - outer domain data
old_hwrf_d02 or new_gfs_d02 (fort.36) - middle domain data
old_hwrf_d03 or new_gfs_d03 (fort.46) - inner domain data

OUTPUT:
data_4x_hwrf (fort.56) - merged data from inner and outer domains
roughness1 or roughness2 (fort.66) - sea-mask (1=sea, 0=land) and ZNT
(roughness length) merged onto the 3X domain.

30_degree_data (fort.61): partially merged data from inner and outer domains.
Not used later.

 USAGE:
 echo ${gesfhr} ${st_int} ${ibgs} | hwrf_merge_nest_4x_10m2.exe

 82

4.4.17 hwrf_pert_ct1.exe

 FUNCTION:
 Adjusts storm vortex (storm_pert).

 INPUT:
 $gesfhr(=6)
 hdas_atcfunix (fort.12) - storm track from previous 6-hr forecast
 tcvitals.as (fort.11) - storm center obs
 wrf_env (fort.26) - environmental flow from previous6-hr forecast (wrf_split1's
 output)
 storm_pert (fort.71) - separated 3D vortex field (wrf_split1's output)

 OUTPUT:
 storm_pert_new (fort.58) - adjusted storm perturbation
 storm_size_p (fort.14) - storm size information
 storm_sym (fort.23) - storm symmetry information

 USAGE:

 echo $gesfhr | hwrf_pert_ct1.exe

4.4.18 hwrf_split1.exe

 FUNCTION:
 Splits the vortex from the background (environmental) field.

 INPUT:
 $gesfhr (=6)
 $ibgs (=1)
 $st_int (the 68-69 characters in the tcvital.as)
 tcvitals.as (fort.11) - storm center obs
 data_4x_hwrf (fort.26) - merged data, on 3X domain, from inner and outer
 domains
 trak.fnl.all (fort.30) - storm center guess
 old_hwrf_d01 (fort.46) - outer domain data

 OUTPUT:
 wrf_env (fort.56) - environmental flow
 storm_pert (fort.71) - separated 3D vortex field
 storm_radius (fort.85) - average of model and observed storm radius
 rel_inform.$cdate (fort.52) - diagnostics file (obs-previous 6-hr forecast)
 vital_syn.$cdate (fort.55) – information for generating bogus if storm not found
 in previous 6-hr forecast

 83

 USAGE:
 echo ${gesfhr} ${ibgs} ${st_int} | hwrf_split.exe

4.4.19 hwrf_wrfout_newtime.exe

 FUNCTION:

Changes the time stamp of WRF analysis run d01 output from 1.5 minute (t=1.5
minute) to initial time (t=0), so that it can be used in the track analysis script
(track_analysis.ksh).

 INPUT:
 WRF analysis run output: wrfout_d01_yyyy-mm-dd_hh:01:30

OUTPUT:WRF analysis run output with its time stamp changed:
wrfout_d01_yyyy-mm-dd_hh:00:00

USAGE:

 hwrf_wrfout_newtime.exe wrfout_d01_yyyy-mm-dd_hh:00:00 yyyymmddhh

4.4.20 ssrc.exe

 FUNCTION:

Reverses the endianness when running GSI on little_endian machines (e.g. Linux)
using big_endian prepBUFR data (e.g. those generated on IBM machines).

 INPUT:
${PREPBUFR}: the NCEP (big-endian) prepBUFR data.

OUTPUT:
prepbufr: the little-endian prepBUFR data.

USAGE:

 ./ssrc.exe

4.4.21 unipost.exe
	
See	 Section	 7.4.1.
	 	

 84

Chapter 5: Ocean Initialization of POM-TC

5.1 Introduction

This chapter explains how to run the initialization of the POM component of the HWRF
model, available from the DTC. Henceforth, this version of the model will be referred to
as POM-TC. Users are also encouraged to read the HWRF v3.4a Scientific
Documentation.

5.2 Run Ocean Initialization Using the Wrapper Script

The wrapper script involved with running the ocean initialization, pom_init_wrapper, can
be found in the directory

${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts/.

Before running pom_init_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

DOMAIN_DATA
POMTC_ROOT
START_TIME
BASIN
SID
TCVITALS
LOOP_CURRENT_DIR
GFS_SPECTRAL_DIR
use_extended_eastatl
HWRF_SCRIPTS
OCEAN_FIXED_DIR

After confirming the environment variables listed above are defined correctly, the user
can run the wrapper script by typing the command:

./pom_init_wrapper.

The two relevant scripts are “pom_init.ksh,” which runs the ocean initialization, and
“gfdl_pre_ocean_sortvit.sh,” which is called from within “pom_init.ksh.” The wrapper
script will call the low-level scripts pom_init.ksh.

Script “pom_init.ksh” is composed of the following seven functions.

 85

function main
function get_tracks
function get_region
function get_sst
function sharpen
function phase_3
function phase_4

Scripts pom-tc-united-grads.sh and pom-tc-eastatl-grads.s,h to plot ocean output in the
Atlantic basin using GRADS, can be found in the directory

${SCRATCH}/HWRF/pomtc/ocean_plot.

5.3 Functions in Script “pom_init.ksh”
5.3.1 main

1. Initialize the function library.
2. Check to see if all the variables are set.
3. Alias the executables/scripts.
4. Check to see if all the executables/scripts exist.
5. Set the stack size.
6. Create a working directory (and cd into it).
7. Get the existing storm track information using function get_tracks.
8. Find the ocean region using function get_region and then set it accordingly.
9. Get the GFS sea surface temperature using function get_sst.
10. Run the feature-based sharpening program using function sharpen.
11. Run POM-TC phase 1 (a.k.a. phase 3) using function phase_3.
12. Run POM-TC phase 2 (a.k.a. phase 4) using function phase_4.

5.3.2 get_tracks

1. Get the entire existing storm track record from the syndat_tcvitals file using
script gfdl_pre_ocean_sortvit.sh and store it in file track.allhours.

2. Add a blank record at the end of the storm track in file track.allhours.
3. Remove all cycles after the current cycle from the storm track record and store

it in file track.shortened.
4. Use track.shortened as track file if it is not empty; otherwise, use

track.allhours.

 86

5. Extract various storm statistics from the last record in the track file to generate
a 72-hour projected track that assumes storm direction and speed remain
constant; save this projected track in file shortstats.

5.3.3 get_region

1. Run the find region code, which selects the ocean region based on the
projected track points in the shortstats file; this region is east_atlantic or
west_united.

2. Store the ocean region from the find region code in file ocean_region_info.txt.
3. If the ocean basin is the East Pacific, reset the ocean region to east_pacific.
4. Set region variable to eastpac, eastatl, or united; run uncoupled if a storm is

not in one of these regions.
5. Store the region variable in file pom_region.txt.

5.3.4 get_sst

1. Create the directory for the GFS SST, mask, and lon/lat files.
2. Create symbolic links for the GFS spectral input files.
3. Run the getsst code.
4. Rename the GFS SST, mask, and lon/lat files for POM-TC phase 3.

5.3.5 sharpen

1. Prepare symbolic links for most of the input files for the sharpening program.
2. Continue with function sharpen only if the region variable is set as united.
3. Create the directory for the sharpening program output files.
4. Continue with function sharpen only if the Loop Current and ring files exist.
5. Use backup GDEM monthly climatological temperature and salinity files if

they exist but the Loop Current and ring files do not exist; warn the user
accordingly.

6. Exit the ocean initialization with an error if neither the Loop Current and ring
files nor the backup climatological temperature and salinity files exist.

7. Assuming the Loop Current and ring files exist, use the simulation start date
to select the second of two temperature and salinity climatology months to use
for time interpolation to the simulation start date.

8. Choose the climatological input based on input_sharp (hardwired to GDEM).
9. Create symbolic links for all input files for the sharpening program.
10. Run the sharpening code.
11. Rename the sharpened climatology file as gfdl_initdata for POM-TC phase 3.

5.3.6 phase_3

1. Create the directory for the POM-TC phase 3 output files.
2. Prepare symbolic links for some of the input files for POM-TC phase 3.

 87

3. Modify the phase 3 parameter file by including the simulation start date.
4. Prepare symbolic links for the sharpened (or unsharpened) temperature and

salinity input file and the topography and land/sea mask file based on whether
the region variable is united, eastatl, or eastpac. If the region variable is
eastatl, choose whether or not to use the extended east Atlantic domain based
on whether or not the value of variable use_extended_eastatl is set to true.

5. Create symbolic links for all input files for POM-TC phase 3. These links
include extra input files for defining the domain center and the land/sea mask
if the region variable is eastpac.

6. Run the POM-TC code for phase 3.
7. Rename the phase 3 restart file as RST.phase3 for POM-TC phase 4.

5.3.7 phase_4

1. Create the directory for the POM-TC phase 4 output files.
2. Prepare symbolic links for some of the input files for POM-TC phase 4.
3. If the track file has less than three lines in it, skip POM-TC phase 4 and use

RST.phase3 for initializing the coupled HWRF simulation.
4. Back up three days to end phase 4 at the coupled HWRF start date.
5. Modify the phase 4 parameter file by including the simulation start date, the

track file, and RST.phase3.
6. Prepare symbolic links for the sharpened (or unsharpened) temperature and

salinity input file and the topography and land/sea mask file based on whether
the region variable is united, eastatl, or eastpac. If the region variable is eastatl,
choose whether or not to use the extended east Atlantic domain based on
whether or not the value of variable use_extended_eastatl is set to true.

7. Create symbolic links for all input files for POM-TC phase 4, including the
track file.

8. Run the POM-TC code for phase 4.
9. Rename the phase 4 restart file as RST.final for the coupled HWRF simulation.

5.4 Executables
5.4.1 gfdl_find_region.exe

FUNCTION:
Select the ocean region based on the projected track points in the shortstats file;
this region is east_atlantic or west_united.

INPUT:
 shortstats

OUTPUT:
 fort.61 (ocean_region_info.txt)

USAGE:

 88

${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_find_region.exe < shortstats

5.4.2 gfdl_getsst.exe

 FUNCTION:
 Extract SST, land/sea mask, and lon/lat data from the GFS spectral files.

 INPUT:
 for11 (gfs.${start_date}.t${cyc}z.sfcanl)
 fort.11 (gfs.${start_date}.t${cyc}z.sfcanl)
 fort.12 (gfs.${start_date}.t${cyc}z.sanl)

 OUTPUT:
 fort.23 (lonlat.gfs)
 fort.74 (sst.gfs.dat)
 fort.77 (mask.gfs.dat)
 getsst.out

 USAGE:
 ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_getsst.exe > getsst.out

5.4.3 gfdl_sharp_mcs_rf_l2m_rmy5.exe

 FUNCTION:
 Run the sharpening program, which takes the T/S climatology, horizontally-
 interpolates it onto the POM-TC grid for the United region domain, assimilates a
 land/sea mask and bathymetry, and employs the diagnostic, feature-based
 modeling procedure described in the HWRF Scientific Documentation.

 INPUT:
 input_sharp
 fort.66 (gfdl_ocean_topo_and_mask.${region})
 fort.8 (gfdl_gdem.${mm}.ascii)
 fort.90 (gfdl_gdem.${mmm2}.ascii)
 fort.24 (gfdl_ocean_readu.dat.${mm})
 fort.82 (gfdl_ocean_spinup_gdem3.dat.${mm})
 fort.50 (gfdl_ocean_spinup_gspath.${mm})
 fort.55 (gfdl_ocean_spinup.BAYuf)
 fort.65 (gfdl_ocean_spinup.FSgsuf)
 fort.75 (gfdl_ocean_spinup.SGYREuf)
 fort.91 (mmdd.dat)
 fort.31 (hwrf_gfdl_loop_current_rmy5.dat.${yyyymmdd})
 fort.32 (hwrf_gfdl_loop_current_wc_ring_rmy5.dat.${yyyymmdd})

 OUTPUT:

 89

 fort.13 (gfdl_initdata.${region}.${mm})
 sharpn.out

 USAGE:

${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_sharp_mcs_rf_l2m_rmy5.exe <
input_sharp > sharpn.out

5.4.4 gfdl_ocean_united.exe

 FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3
and phase 4, respectively, as in the model code) in the United region.

 INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.13 (gfdl_initdata.united.${mm})
 fort.66 (gfdl_ocean_topo_and_mask.united)
 fort.14 (not used if phase 1; RST.phase3.united if phase 2)

 OUTPUT:
 RST.phase3.united if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

 USAGE:

Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_united.exe >
phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_united.exe >
phase4.out

5.4.5 gfdl_ocean_eastatl.exe

 FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3
and phase 4, respectively, as in the model code) in the East Atlantic region.

 INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.13 (gfdl_initdata.eastatl.${mm})

 90

 fort.66 (gfdl_Hdeepgsu.eastatl)
 fort.14 (not used if phase 1; RST.phase3.eastatl if phase 2)
 OUTPUT:
 RST.phase3.eastatl if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

 USAGE:

Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastatl.exe >
phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastatl.exe >
phase4.out

5.4.6 gfdl_ocean_ext_eastatl.exe

 FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3
and phase 4, respectively, as in the model code) in the extended East Atlantic
region.

 INPUT:
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.12 (gfdl_initdata.gdem.united.${mm})
 fort.13 (gfdl_initdata.eastatl.${mm})
 fort.66 (gfdl_ocean_topo_and_mask.eastatl_extn)
 fort.14 (not used if phase 1; RST.phase3.eastatl if phase 2)

 OUTPUT:
 RST.phase3.eastatl if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2

 USAGE:

Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_ext_eastatl.exe >
phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_ext_eastatl.exe >
phase4.out

5.4.7 gfdl_ocean_eastpac.exe

 FUNCTION:

Run POM-TC ocean phase 1 or phase 2 (also known historically as ocean phase 3
and phase 4, respectively, as in the model code) in the East Pacific region.

 91

 INPUT:
 domain.center (used if phase 1; not used if phase 2)
 gfdl_pctwat (used if phase 1; not used if phase 2)
 fort.10 (parameters.inp)
 fort.15 (empty if phase 1; track if phase 2)
 fort.21 (sst.gfs.dat)
 fort.22 (mask.gfs.dat)
 fort.23 (lonlat.gfs)
 fort.45 (gfdl_raw_temp_salin.eastpac.${mm} if phase 1; not used if phase 2)
 fort.13 (output if phase 1; temp_salin_levitus.eastpac if phase 2)
 fort.66 (output if phase 1; eastpac_ocean_model_info if phase 2)
 fort.14 (not used if phase 1; RST.phase3.eastpac if phase 2)

 OUTPUT:
 RST.phase3.eastpac if phase 1; RST.final if phase 2
 phase3.out if phase 1; phase4.out if phase 2
 fort.13 (temp_salin_levitus.eastpac) if phase 1 only
 fort.66 (eastpac_ocean_model_info) if phase 1 only

 USAGE:

Phase 1: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastpac.exe >
phase3.out
Phase 2: ${SCRATCH}/HWRF/pomtc/ocean_exec/gfdl_ocean_eastpac.exe >
phase4.out

 92

Chapter 6: How to Run HWRF

6.1 Introduction

HWRF is an atmosphere-ocean coupled forecast system, which includes an atmospheric
component (WRF-NMM), an ocean component (POM-TC), and the NCEP Coupler.
Therefore, HWRF is a Multiple Program Multiple Data (MPMD) system which consists
of three executables, WRF, POM-TC, and Coupler. After the ocean and atmosphere
initializations are successfully completed, the coupled HWRF system run can be
submitted. The commands issued for the model run depend on the computer platform.

6.2 How to Run HWRF Using the Wrapper Script
hwrf_wrapper

This section describes how to use the wrapper script hwrf-utilities/wrapper_scripts/
hwrf_wrapper to run the coupled HWRF forecast on two types of platforms: the
IBM/AIX and Linux machines. The user is responsible for understanding how to run
MPMD jobs on the platform where the HWRF system will be run, if that system is not
covered in this document.

Before running hwrf_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
WRF_ROOT
HWRF_UTILITIES_ROOT
START_TIME
ATMOS_DOMAINS
FCST_LENGTH
FCST_INTERVAL
DOMAIN_DATA

Note that in the wrapper script hwrf_wrapper, the following two variables are defined.

WRF_MODE = main
WRF_CORES =202

 93

Note that WRF_CORES includes one processor for the coupler and one for POMTC. The
user can define WRF_CORES to a different number. It has been shown that WRF_
CORES can be defined as the following numbers (including the two processors for the
coupler and POMTC):

6, 10, 18, 26, 34, 38, 50, 66, 92, 102, 122, 152, 182, and 202.

The following numbers do not work:

73, 39, and 43.

The user can either use a batch system to submit the HWRF job to the remote
computation nodes, or, on Linux machines that use Oracle Grid Engine, interactively
connect to these computation nodes and run the job. Both methods are described in
Section 1.6.

6.3 Overview of the Script

1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.
2. Create and enter the work directory.
3. Link the input files required by WRF, including fix files, initial and boundary

condition files and geographical data files.
4. Run hwrf_swcorner_dynamic.exe to calculate the location of the middle nest

and generate the WRF namelist, namelist.input.
5. Link the input files required by POM-TC, including fix files, initial and

boundary conditions files, bathymetry/topography data files etc.
6. Generate a namelist for POM-TC.
7. Generate a namelist for the coupler.
8. Submit the WRF, POM-TC coupled run.

• On IBM with LSF:

 Use the command mpirun.lsf
mpirun.lsf -cmdfile cmdfile
where cmdfile is a file containing the list of executables. For example, the cmdfile
file below indicates that the coupled run will be submitted to 202 processors, one
for the coupler (hwrf_wm3c.exe), one for the United domain ocean model
(hwrf_ocean_united.exe) and 200 for wrf.exe:
hwrf_wm3c.exe
 hwrf_ocean_united.exe
wrf.exe
 wrf.exe
 (total of 200 wrf.exe)

 94

wrf.exe
 wrf.exe

• On Linux with Oracle Grid Engine, previously known as Sun Grid Engine (SGE):

Use the command mpiexec
For example, the following command will run the coupled model using
202 processors, one for the coupler (hwrf_wm3c.exe), one for the United
domain ocean model (hwrf_ocean_united.exe) and 200 for wrf.exe
/usr/local/esrl/bin/mpiexec -np 1 ./hwrf_wm3c.exe : -np 1
./hwrf_ocean_united.exe : -np 200 ./wrf.exe

Note that in the examples listed above, for the POM-TC United domain, the
ocean model executable hwrf_ocean_united.exe is used.

HWRF has the capability of running uncoupled (atmosphere standalone) runs if the
changes below are made to the script. Note that this is not an operational
configuration.

On IBM with LSF:
 Use the command mpirun.lsf

mpirun.lsf ${WRF_ROOT}/main/wrf.exe
wrf.exe will be submitted using the number of processors specified by the
LSF options

On Linux with Oracle Grid Engine, previously known as Sun Grid Engine (SGE):
Use the command mpiexec

For example, the following command will run the uncoupled model using
200 processors for wrf.exe
mpiexec -np 200 ./wrf.exe

6.4 Output Files in the Directory

Output files in directory ${DOMAIN_DATA}/wrfprd

A successful run of the wrapper script hwrf_wrapper and the low-level script wrf.ksh will
produce output files with the following naming convention.

Primary output files containing most variables, output every three hours.

wrfout_d01_yyyy-mm-dd_hh:mm:ss
wrfout_d02_yyyy-mm-dd_hh:mm:ss
wrfout_d03_yyyy-mm-dd_hh:mm:ss

 95

Auxiliary output files containing accumulated precipitation and 10-m winds, hourly
output

auxhist1_ d01_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss

Text file with time series of storm properties.
hifreq_d03.htcf

File hifreq_d03.htcf has nine columns containing the following items.

1. forecast lead time (s)
2. minimum sea level pressure in the inner nest (hPa)
3. latitude of gridpoint with minimum sea level pressure
4. longitude of gridpoint with minimum sea level pressure
5. maximum wind in the inner nest at the lowest model level (kt)
6. latitude of gridpoint with the maximum wind
7. longitude of gridpoint with the maximum wind
8. latitude of the location of the center of the inner nest
9. longitude of the location of the center of the inner nest

The ocean model will produce diagnostic output files with the following naming
convention.

1. GRADS.yymmddhh, (GrADS format, including temperature, salinity, density,
U, V, average U, average V and elevation) (for united and east Atlantic basins)

2. EL.yymmddhh	 	 (binary,	 elevation)	 (for	 united,	 east	 Atlantic	 and	 east	 Pacific	
basins	

3. MLD.yymmddhh	 (binary,	 mixed	 layer	 depth)	 (for	 united	 and	 east	 Atlantic	
basins)	

4. OHC.yymmddhh	 (binary,	 ocean	 heat	 content)	 (for	 united	 and	 east	 Atlantic	
basins)	

5. T.yymmddh (binary, temperature) (for united,	 east	 Atlantic	 and	 east	 Pacific	
basins)

6. TXY.yymmddhh (binary, momentum flux) (for united,	 east	 Atlantic	 and	 east	
Pacific	 basins)

7. U.yymmddh (binary east-west direction current) (for united,	 east	 Atlantic	 and	
east	 Pacific	 basins)

8. V.yymmddhh (binary north-south direction current) (for united,	 east	 Atlantic	
and	 east	 Pacific	 basins)

9. WTSW.yymmddhh (binary, heat flux and shortwave radiation) (for united and
east Atlantic basins)

For example, the first POM-TC output file for a run started at 1200 UTC, 23 August 2011
would be: GRADS.11082302 etc.

 96

6.5 Status Check

To check whether the run was successful, look for “SUCCESS COMPLETE WRF” at the
end of the log file (e.g., rsl.out.0000).

6.6 Running HWRF with Alternate Namelist Options

By following the directions above, the namelist for the WRF model (namelist.input) will
be constructed from a template provided in hwrf-utilities/parm. A sample namelist can be
found in Section 6.8. This template should only be altered by advanced users because
many of the options available in the WRF model are not supported for the HWRF
configuration.

The WRF namelist is described in detail at http://www.dtcenter.org/wrf-nmm/users/docs/
user_guide/V3/users_guide_nmm_chap1-7.pdf.

The HWRF physics suite can be altered in the ways described in the table below. These
configurations are only preliminarily tested and only limited support is provided for their
use.

PARAMETERIZATION OPERATIONA

L
POSSIBLE ALTERNATES (ONLY
PRELIMINARILY TESTED)

Cumulus HWRF SAS
(84)

Tidtke (6), KF (1- trigger option 1), New SAS
(14)

Microphysics Tropical Ferrier
(85)

None

Surface Layer GFDL (88) None
Planetary Boundary Layer GFS (3) None
Land Surface Model GFDL (88) Noah (2)
Long Wave Radiation GFDL (98) RRTMG (4) (must link in table)
Short Wave Radiation GFDL (98) RRTMG (4) (must link in table), Dudhia (1)

The HWRF operational configuration uses option vortex_tracker=2,2,4 for the internal
nest tracking. Note the following recommendations about the choice of vortex_tracker.

1. Vortex_tracker=1 only works when max_dom=2.
2. Vortex_tracker=2 only works for d01 or when the domain has an active nest.
3. Vortex_tracker=4 should not be used for d01.

Users have the option of getting a high frequency (each time step) of ascii output of
several hurricane related values (forecast lead time, minimum MSLP, location of the
minimum MSLP, max wind speed, location of the maximum wind speed, location of the

 97

domain center) by setting the “high_freq” option in the namelist to “true”. Setting it to
“false” will turn off this output. The “high_freq” option is in the time_control section of
the namelist.

6.7 Executables

6.7.1 wrf.exe

FUNCTION:
Atmospheric component of HWRF

INPUT:
geogrid static files: geo_nmm.d01.nc, geo_nmm_nest.l01.nc, and
geo_nmm_nest.l02.nc
wrfbdy file: wrfbdy_d01
wrfinput file: wrfinput_d01
wrfanl files:wrfanl_d02_${YYYY}-${MM}-${DD}_${HH}:00:00 and
wrfanl_d03_${YYYY}-${MM}-${DD}_${HH}:00:00
fort.65 and gravity wave drag file gwd_surface
WRF static files
namelist.input

 OUTPUT:

A successful run of wrf.exe will produce output files with the following naming
convention.
wrfout_d01_yyyy-mm-dd_hh:mm:ss
wrfout_d02_yyyy-mm-dd_hh:mm:ss
wrfout_d03_yyyy-mm-dd_hh:mm:ss
auxhist1_ d01_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
auxhist1_ d02_yyyy-mm-dd_hh:mm:ss
hifreq_d03.htcf

 USAGE:

For a coupled HWRF forecast, wrf.exe must be submitted with the coupler and the
ocean model (see Section 6.2).

6.7.2 hwrf_wm3c.exe

FUNCTION:
Coupler that links the atmospheric component wrf.exe and oceanic component
hwrf_ocean_united.exe, hwrf_ocean_eastatl.exe or hwrf_ocean_eastpac.exe

 98

INPUT:
coupler namelist: cpl.nml

 OUTPUT:
None

USAGE:
For a coupled HWRF forecast, the coupler hwrf_wm3c.exe must be submitted to
the computers with the atmosphere model wrf.exe and the ocean model
hwrf_ocean_united.exe, hwrf_ocean_eastatl.exe or hwrf_ocean_eastpac.exe (see
Section 6.2).

6.7.3 hwrf_ocean_united.exe

 FUNCTION:
 Oceanic model for HWRF, for the United domain

 INPUT:

gfdl_ocean_topo_and_mask.united
gfdl_initdata.united.${MM}, ${MM} is the month for the forecast storm
RST.final
sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track

Note the ocean’s initial state of temperature and salinity for the United domain
(gfdl_initdata.united.${MM}) comes from the ocean initialization with a
sharpening process.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC,
MLD, T, U, V, WTSW and TXY. (see Section 6.4)
For example, the first POM-TC output file for a run started at 1200 UTC, 23
August 2011 would be GRADS.11082312

USAGE:

 99

For a coupled HWRF forecast, the ocean model hwrf_ocean_united.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.7.4 hwrf_ocean_eastatl.exe

 FUNCTION:
 Oceanic model for HWRF, for the East Atlantic domain

 INPUT:

gfdl_ocean_topo_and_mask.eastatl
gfdl_initdata.eastatl.${MM}, ${MM} is the month for the forecast storm

 gfdl_Hdeepgsu.eastatl
 RST.final

sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track

Note the ocean’s initial state of temperature and salinity for east Atlantic basin
(gfdl_initdata.eastatl.${MM}) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC,
MLD, T, U, V, WTSW and TXY. (see Section 6.4)

For example, the first POM-TC output file for a run started at 1200 UTC, 23
August 2011 would be GRADS.11082312.

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastatl.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.7.5 hwrf_ocean_eastatl_ext.exe

 FUNCTION:
Oceanic model for HWRF, for the East Atlantic extended domain. The East
Atlantic extended domain is used when the storm is in East Atlantic region and

 100

the environment variable ${use_extended_eastatl} = T. This is not an operational
configuration.

 INPUT:

gfdl_ocean_topo_and_mask.eastatl_ext
gfdl_initdata.eastatl.${MM}, ${MM} is the month for the forecast storm

 gfdl_initdata.gdem.united.${MM}, ${MM} is the month for the forecast storm.
RST.final
sst.gfs.dat
mask.gfs.dat
lonlat.gfs
track

Note the ocean’s initial state of temperature and salinity for east Atlantic basin
(gfdl_initdata.eastatl.${MM}) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention:
${VARIABLE}.yymmddhh, where ${VARIABLE} includes GRADS, EL, OHC,
MLD, T, U, V, WTSW and TXY. (see Section 6.4)

For example, the first POM-TC output file for a run started at 1200 UTC, 23
August 2011 would be GRADS.11082312

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastatl_ext.exe must
be submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.7.6 hwrf_ocean_eastpac.exe

 FUNCTION:
Oceanic model for HWRF, for the east Pacific domain.

 INPUT:

temp_salin_levitus.eastpac
eastpac_ocean_model_info
RST.final
sst.gfs.dat
mask.gfs.dat

 101

lonlat.gfs
track
Note the ocean’s initial state of temperature and salinity for east Pacific basin
(temp_salin_levitus.eastpac) comes from fixed data based on climatology.

OUTPUT:
The ocean model will produce output files with the following naming convention.
${VARIABLE}.yymmddhh, where ${VARIABLE} includes EL, T, U, V, and
TXY. (see Section 6.4)

For example, the first POM-TC output file for a run started at 1200 UTC, 23
August 2011 would be EL.11082312.

USAGE:
For a coupled HWRF forecast, the ocean model hwrf_ocean_eastpac.exe must be
submitted to the computers with the atmosphere model wrf.exe and the coupler
hwrf_wm3c.exe (see Section 6.2).

6.7.7 hwrf_swcorner_dynamic.exe

FUNCTION:
Calculates the lower-left corner of the nest as (i_parent_start, j_parent_start).

INPUT:
Storm center location: storm.center
domain center location: domain.center
fort.12: namelist_main.input

OUTPUT:
set_nest, which contains the i_parent_start and j_parent_start. For example the
following set_nest file specifies that the middle nest domain lower-left corner
location is at (103,187) on the parent domain grid.

istart=00103
jstart=00187

USAGE:
hwrf-utilities/exec/hwrf_swcorner_dynamic.exe

6.8 Sample HWRF namelist

The HWRF namelist used for the release case, Hurricane Irene (2011), is listed below.

 102

&time_control
 start_year = 2011, 2011, 2011,
 start_month = 08, 08, 08,
 start_day = 23, 23, 23,
 start_hour = 12, 12, 12,
 start_minute = 00, 00, 00,
 start_second = 00, 00, 00,
 end_year = 2011, 2011, 2011,
 end_month = 08, 08, 08,
 end_day = 28, 28, 28,
 end_hour = 18, 18, 18,
 end_minute = 00, 00, 00,
 end_second = 00, 00, 00,
 interval_seconds = 21600,
 history_interval = 180, 180, 180,
 auxhist1_interval = 60, 60, 60
 frames_per_outfile = 1,1,1
 frames_per_auxhist1 = 1,1,1
 analysis = F, T,T,
 restart = .false.,
 restart_interval = 36000,
 reset_simulation_start = F,
 io_form_input = 2
 io_form_history = 2
 io_form_restart = 2
 io_form_boundary = 2
 io_form_auxinput1 = 2
 io_form_auxhist1 = 2
 auxinput1_inname = "met_nmm.d<domain>.<date>"
 debug_level = 1
 override_restart_timers = T
 /

 &fdda
 /
&domains
 time_step = 45,
 time_step_fract_num = 0,
 time_step_fract_den = 1,
 max_dom = 3,
 s_we = 1, 1, 1,
 e_we = 216, 88, 154,
 s_sn = 1, 1, 1,
 e_sn = 432, 170, 272,
 s_vert = 1, 1, 1,

 103

 e_vert = 43, 43, 43,
 dx = 0.18, 0.06, 0.02,
 dy = 0.18, 0.06, 0.02,
 grid_id = 1, 2, 3,
 tile_sz_x = 0,
 tile_sz_y = 0,
 numtiles = 1,
 nproc_x = -1, ! must be on its own line
 nproc_y = -1, ! must be on its own line
 parent_id = 0, 1, 2,
 parent_grid_ratio = 1, 3, 3,
 parent_time_step_ratio = 1, 3, 3,
 i_parent_start = 0, 00103, 18,
 j_parent_start = 0, 187, 41,
 feedback = 1,
 num_moves = -99
 num_metgrid_levels = 27,
 p_top_requested = 5000,
 ptsgm = 42000
eta_levels = 1.0, .9919699, .9827400, .9721600, .9600599,
 .9462600, .9306099, .9129300, .8930600,

.8708600, .8462000, .8190300, 7893100,
 .7570800, .7224600, .6856500, .6469100, .6066099,
 .5651600, .5230500, .4807700, .4388600,
 .3978000, .3580500, 3200099, .2840100,
 .2502900, .2190100, .1902600, .1640600,

.1403600, .1190600, .1000500, .0831600,

.0682400, .0551200, .0436200, .0335700,

.0248200, .0172200, .0106300, .0049200,

.0000000,
 use_prep_hybrid = F,
 num_metgrid_soil_levels = 4,
/
 &physics
 num_soil_layers = 4,
 mp_physics = 85, 85, 85,
 ra_lw_physics = 98, 98, 98,
 ra_sw_physics = 98, 98, 98,
 sf_sfclay_physics = 88, 88, 88,
 sf_surface_physics = 88, 88, 88,
 bl_pbl_physics = 3, 3, 3,
 cu_physics = 84, 84, 0,
 mommix = 1.0, 1.0, 1.0,
 h_diff = 1.0, 1.0, 1.0,
 gwd_opt = 2, 0, 0,
 sfenth = 0.0, 0.0, 0.0,

 104

 nrads = 80,240,720,
 nradl = 80,240,720,
 nphs = 4,12,36,
 ncnvc = 4,12,36,
 movemin = 3,3,3,

! IMPORTANT: dt*nphs*movemin for domain 2 and 3 must be 540 and 180,
respectively
! AND the history output times (10800, 10800, 3600) must be
! divisible by dt*nphs*movemin for domains 1, 2 and 3

 gfs_alpha = 0.5,0.5,0.5,
 sas_pgcon = 0.55,0.2,0.2,
sas_mass_flux =0.5,0.5,0.5,
 co2tf = 1,

! --
! VORTEX TRACKER
! --

vortex_tracker=2,2,4,

! Options for vortex tracker #4: the revised centroid method:

! Vortex search options:
 vt4_radius = 250000.0, 250000.0, 250000.0 ! search radius in m
 vt4_weightexp = 1.0, 1.0, 0.5, ! weight exponent (1=mass)

! Noise removal options:
 vt4_noise_pmin = 85000., 85000., 85000. ! min allowed MSLP
 vt4_noise_pmax = 103000., 103000., 103000. ! max allowed MSLP
 vt4_noise_dpdr = 0.6, 0.6, 0.6, ! max dP/dx in Pa/m
 vt4_noise_iter = 2, 2, 2, ! noise removal distance

! Disable nest movement at certain intervals to prevent junk in the output files:
 nomove_freq = 0.0, 6.0, 6.0, ! hours
/
 &dynamics
 non_hydrostatic = .true., .true, .true,
 euler_adv = .false.
 wp = 0, 0, 0,
 coac = 0.75,3.0,4.0,
 codamp = 6.4, 6.4, 6.4,
 terrain_smoothing = 2,
/ &bdy_control
 spec_bdy_width = 1,
 specified = .true. /

 105

&namelist_quilt
poll_servers =.false.
 nio_tasks_per_group = 0,
 nio_groups = 4 /
&logging
compute_slaves_silent =.true.
io_servers_silent =.true.
stderr_logging =.false.
 /

 106

Chapter 7: HWRF Post Processor

7.1 Introduction

The NCEP UPP was designed to de-stagger HWRF parent and nest domain output,
compute diagnostic variables and interpolate from their native grids to NWS standard
levels (pressure, height, etc.) and standard output grids (latitude/longitude, Lambert
Conformal, polar- stereographic, Advanced Weather Interactive Processing System grids
etc.), in GRIB format. This package also combines the parent and nest domains forecasts
onto one combined domain grid.

Information on how to acquire and build the UPP code is available in Chapter 2.

7.2 How to Run UPP Using the Wrapper Script
unipost_wrapper

The UPP wrapper script unipost_wrapper and the low-level script run_unipost are
distributed in the tar file hwrfv3.4a_utilities.tar.gz and, following the procedure outlined
in Chapter 2, will be expanded in the directory of hwrf-utilities/wrapper_scripts and
hwrf-utilities/scripts, respectively.

Before running unipost_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

HWRF_SCRIPTS
UPP_ROOT
HWRF_UTILITIES_ROOT
FHR
DOMAIN_DATA
ATMOS_DOMAINS

Next use the qrsh command to connect to the computer’s remote computation nodes (see
Section 1.6). Note the number of processors to which the user should connect is defined
as UNI_CORES. Currently UPP should be run with one processor.

Then run the wrapper script by typing its name, unipost_wrapper.

Note that other UPP scripts are distributed in the UPP release tar file
hwrfv3.4a_upp.tar.gz but they do not perform all the processes required for HWRF.

 107

A script named run_grads is provided for running GrADS to plot the UPP output. The
users can find the script run_grads in the directory hwrf-utilities/scripts. Its wrapper
script, rungrads_wrapper, is located in the directory hwrf-utilities/wrapper_scripts.
Before running rungrads_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined (see Appendix).

DOMAIN_DATA
FCST_LENGTH
FCST_INTERVAL
UPP_ROOT
GRADS_BIN

Then run the wrapper script by typing its name: rungrads_wrapper, which will call its
low-level script run_grads.

7.3 Overview of the UPP Script

1. Initialize the function library and check to see if all the environment variables

are set and the executables exist.

2. Create and enter the work directory.

3. Copy the fix files and control file required by UPP

The file hwrf-utilities/parm/hwrf_cntrl.hurcn is used to specify the variables
that will be post processed (for more information see WRF-NMM
documentation), and if changes in the post-processed variables are desired, the
control file hwrf_cntrl.hurcn needs to be altered. For HWRF, the following
variables, which are required by the GFDL Vortex Tracker (see Chapter 8),
should be post processed:
 absolute vorticity at 850 mb and 700 mb
 MSLP
 geopotential height at 850 and 700 mb
 wind speed at 10 m, 850 mb, 700 mb and 500 mb.

4. Run unipost.exe for each forecast valid time for the parent, middle nest and

inner nest domains. A namelist, itag, is created for each forecast valid time
and domain, and then read in by unipost.exe from stdin (unit 5). This namelist
contains 4 lines.
 Name of the WRF output file to be post processed
 Format of the WRF output (NetCDF or binary; choose NetCDF for HWRF)
 Forecast valid time (not model start time) in WRF format
 Model name (NMM or NCAR; choose NMM for HWRF)

 108

5. Run copygb to horizontally interpolate the native UPP output files to a variety
of regular lat/lon grids.

6. Create a merged UPP output for the GFDL vortex tracker.

Output files in the working directory ${DOMAIN_DATA}/postprd/${fhr}:

 The following three files are in GRIB format on the HWRF native grids.

o WRFPRS_d01.${fhr} for the HWRF parent domain
o WRFPRS_d02.${fhr} for the HWRF middle nest domain
o WRFPRS_d03.${fhr} for the HWRF inner nest domain

 The following files are in GRIB format on regular lat/lon grids. The name
convention is “forecast domain(s)”_“interpolation domain”_“resolution”_
“variables”_“forecast lead time”. For example, d01_d01_010_all.006 is the 6-
hour HWRF parent domain forecast output that has been interpolated to a
regular lat/lon grid covering an area similar to the one of the parent domain,
with a horizontal resolution of 0.1 degree, containing all the variables present
in the unipost.exe output file. “d02p” is a grid that is slightly larger than the
middle nest domain. “t02” is a grid that is about 10x10 degrees and used later
by the GFDL vortex tracker to calculate the track. When “variables”=“all”, it
means all the variables will be included in the interpolated GRIB file. When
only those variables required by the GFDL vortex tracker are retained,
“variable”=”sel”. Files whose name start with merge are the result of
combining two domains together to generate a single output file.

o d01_d01_010_all.${fhr}
o d01_d01_010_sel.${fhr}
o d01_d01_025_all.${fhr}
o d01_d01_025_sel.${fhr}
o d01_d02p_003_all.${fhr}
o d01_d02p_003_sel.${fhr}
o d02_d01_010_all.${fhr}
o d02_d01_010_sel.${fhr}
o d02_d02_010_all.${fhr}
o d02_d02_010_sel.${fhr}
o d02_d02p_003_all.${fhr}
o d02_d02p_003_sel.${fhr}
o d03_d01_010_all.${fhr}
o d03_d01_010_sel.${fhr}
o d03_d02p_003_all.${fhr}

 109

o d03_d02p_003_sel.${fhr}
o d03_d03_003_all.${fhr}
o d03_d03_003_sel.${fhr}
o merged_d01d02d03_t02_003_sel.${fhr}
o merged_d02d03_d01_010_sel.${fhr}
o merged_d02d03_d02p_003_sel.${fhr}

Status check:
If “End of Output Job” is found in the standard output (stdout), the HWRF UPP script
has finished successfully.

7.4 Executables
7.4.1 unipost.exe

FUNCTION:
De-staggers the HWRF native output (wrfout_d01, wrfout_d02, or wrfout_d03),
interpolates it vertically to pressure levels, computes derived variables, and
outputs in GRIB format.

INPUT:
Table ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_eta_micro_lookup.dat
unipost control file ${SCRATCH}/HWRF/hwrf-utilities/parm/hwrf_cntrl.hurcn
HWRF native output (wrfout_d01, wrfout_d02 or wrfout_d03)
namelist itag

OUTPUT:
HWRF output in GRIB format WRFPRS_d01.${fhr}, WRFPRS_d02.${fhr} or
WRFPRS_d03.${fhr}

USAGE:

 ${SCRATCH}/HWRF/ UPP/bin/unipost.exe < itag

7.4.2 copygb.exe

FUNCTIONS:
a) interpolates a GRIB file to a user-specified grid
b) combines two GRIB files

INPUT for function a:
User-specified grid (${hr_grid})

 110

unipost.exe output (WRFPRS_d01.${fhr}, WRFPRS_d02.${fhr} or
WRFPRS_d03.${fhr})

INPUT for function b:
User-specified grid (${hr_grid})
Two GRIB files, for example, d01_d01_010_all.000 and d03_d01_010_all.000

OUTPUT:
GRIB file on the grid of ${hr_grid}. See “Output files in the working directory
${DOMAIN_DATA}/postprd/${fhr}”

USAGE:
a) ${SCRATCH}/HWRF/UPP/bin/copygb.exe -xg"${hr_grid}" input_GRIB_file

out_GRIB_file

b) When a “-M” option is used, and the argument following it is a GRIB file, the

GRIB file will be interpreted as a merge file. This option can be used to
combine two GRIB files.

For example, the following command will combine wrfprs_d01.${fhr} and
wrfprs_d02.${fhr} to wrfprs.${fhr}, whose grid is specified by ${hr_grid}.

${SCRATCH}/HWRF/ UPP/bin/copygb.exe -g"${hr_grid}" –xM
wrfprs_d01.${fhr} wrfprs_d02.${fhr} wrfprs.${fhr}

 111

Chapter 8: GFDL Vortex Tracker

8.1 Introduction

The GFDL vortex tracker is a program that ingests model forecasts in GRIB format,
objectively analyzes the data to provide an estimate of the vortex center position (latitude
and longitude), and tracks the storm for the duration of the forecast. Additionally, it
reports additional metrics of the forecast storm, such as intensity (maximum 10-m winds
and the minimum mean sea level pressure - MSLP) and structure (wind radii for 34, 50,
and 64 knot thresholds in each quadrant of each storm) at each output time. The GFDL
vortex tracker requires the forecast grids to be on a cylindrical equidistant, latitude-
longitude (lat/lon) grid. For HWRF, UPP is used to process the raw model output and
create the GRIB files for the tracker.

The vortex tracker creates two output files containing the vortex position, intensity and
structure information: one in Automated Tropical Cyclone Forecast (ATCF) format; and
another in a modified ATCF format.

The GFDL vortex tracker tracks the hurricane vortex center positions by searching for the
average of the maximum or minimum of several parameters in the vicinity of an input
first guess position of the targeted vortex. The primary tracking parameters are relative
vorticity at 850 mb and 700 mb, MSLP, and geopotential height at 850 and 700 mb.
Secondarily, wind speed at 10 m, and 850 mb and 700 mb are used. Winds at 500 mb are
used, together with other parameters, for advecting the storm and creating a first guess
position for all times beyond initialization. Many parameters are used in order to provide
more accurate position estimates for weaker storms, which often have poorly defined
structures/centers.

Besides the forecast file in GRIB format, the vortex tracker also ingests a GRIB index
file, which is generated by running the program grbindex. The GRIB utility wgrib is also
used for preparing data for the tracker. Both grbindex and wgrib were developed by
NCEP and are distributed by the DTC as part of the hwrf-utilities.

This version of the tracker contains added capabilities of tracking cyclogenesis and
identifying cyclone thermodynamic phases. The identification of cyclone
thermodynamic phases requires that the input data contain temperature every 50 hPa from
300 to 500 mb (for the “vtt” scheme) or the geopotential height every 50 mb from 300 to
900 mb (for the “cps” scheme) (see Section 8.4).

 112

8.2 How to Run the GFDL Vortex Tracker Using the
Wrapper Script

The HWRF scripts come in the tarfile hwrfv3.4a_utilities.tar.gz and, following the
procedures outlined in Chapters 1 and 2, will be expanded in the directories
${SCRATCH}/HWRF/hwrf-utilities/wrapper_scripts and ${SCRATCH}/HWRF/hwrf-
utilities/scripts.

Before running tracker_wrapper, check global_vars.ksh to make sure the following
variables are correctly defined. (See Appendix)

HWRF_SCRIPTS
HWRF_UTILITIES_ROOT
TRACKER_ROOT
DOMAIN_DATA
START_TIME
ATCFNAME
SID

Then run the wrapper script by typing its name, tracker_wrapper.

The tracker runs the combined domain. It produces a 3-hourly track and a 6-hourly track
for the entire forecast length and another 3-hourly one for the 12-hr forecast, using the
UPP output merge_d01d02d03_t02_sel.${fhr} (see Section 7.3). The track for the 12-hr
forecast is used in the vortex relocation procedure for the following cycle.

8.3 Overview of the Script tracker.ksh

The steps performed by the script tracker.ksh are listed below.

1. Initialize the function library and check to see if all the environment variables
are set and the executables exist.

2. Create and enter the work directory.
3. Create a tracker namelist file.
4. Concatenate the UPP output files into one GRIB file that contains all the

forecast lead times.
5. Run grbindex to get a GRIB index file for the GRIB file generated in 4.
6. Create a file, fcst_minutes, which contains the forecast lead times the tracker

will process.
7. Link the input files (see GFDL vortex tracker software input description).
8. Run the tracker executable hwrf_gettrk.exe.
9. Output will be generated in ${DOMAIN_DATA}/gvtprd.

 113

8.4 How to Generate Phase Space Diagnostics

The released wrapper and low-level scripts do not include the phase space diagnostics.
To use this function, the user should either modify the scripts or run the following
procedures manually.

1) In the GFDL vortex tracker namelist set the items listed below.
 phaseflag='y'
 phasescheme='both' or ‘cps’ or ‘vtt’
 wcore_depth=1.0

2) If phasescheme is set to ‘cps’, run hwrf_vint.exe (see Section 8.6.2) to
vertically interpolate the geopotential from 300 to 900 mb at a 50 mb interval.
Then append these geopotential variables to the tracker’s GRIB format input
file.

3) If phasescheme is set to ‘vtt’ , run hwrf_vint.exe (see Section 8.6.2) to
vertically interpolate the temperature from 300 to 500 mb at a 50 mb interval.
Then run hwrf_tave.exe (see Section 8.6.3) to obtain the average temperature
between 300 and 500 mb. This average temperature field is appended to the
tracker’s GRIB format input file.

4) If phasescheme is set to ‘both’, then both steps 2) and 3) are needed.
5) When the phase space diagnostics is performed, the output will be generated

in fort.64 as fields 37-41 (see Section 8.6.1).

8.5 How to Run the Tracker in Cyclogenesis Mode

The released wrapper and low-level scripts do not include running the tracker in
cyclogenesis mode. To use this function, the user should either modify the scripts or run
the following procedures manually.

1) In the GFDL vortex tracker namelist set the items listed below.
trkrinfo%westbd
trkrinfo%eastbd
trkrinfo%southbd
trkrinfo%northbd
They are the boundaries for searching for new storms in cyclogenesis mode.
They do not need to match the boundaries of your grid.

2) In the GFDL vortex tracker namelist, set the item trkrinfo%type=tcgen or
trkinfo%type=midlat (for the difference between “tcgen” and “midlat”, see
Section 8.6.1).

3) The tracker in cyclogenesis mode requires that the files fort.12 and fort.14
exist in the working directory, but these two files can be blank, as created by
the commands “touch fort.12” and “touch fort.14”, respectively.

4) In addition to fort.64 and fort.69, another ATCF format output file, fort.66,
will be produced by the tracker when it runs in cyclogenesis mode.

 114

8.6	 	 Executables
8.6.1 hwrf_gettrk.exe

INPUT:
fort.11: GRIB file containing the postprocessed HWRF forecast
fort.12: TCVitals file containing the first guess location of the forecast vortex

For example, the following TCVitals file (this should be a 1-line file without line
break) provides a first guess location for Hurricane Irene of 20.6N and 70.6W.

NHC 09L IRENE 20110823 1200 206N 0706W 295 051 0978 1008 0556 44
028 0334 0222 0222 0241 D 0167 0111 0111 0130 72 280N 780W 0083 0056
0037 0065

fort.14: TCVitals file used for tropical cyclonegenesis tracking. This file is not
used in HWRF’s operational configuration. File fort.14, which can be blank,
should exist in the directory where the tracker is run, otherwise the tracker will
stop.
fort.15: Forecast lead times (in minutes) the tracker will process.
For example, the following file specifies that the tracker will process the GRIB
output for lead times 0, 180, 360 and 540 minutes.
 1 0
 2 180
 3 360
 4 540

Note the format of the records in this file is a 4-digit integer showing the number
of the forecast lead time, followed by 1 blank space, followed by a 5-digit integer
showing the forecast lead time in minutes.

fort.31: a GRIB index file generated by the program grbindex.

NAMELIST:

inp%bcc First 2 digits of the year for the initial time of the forecast (e.g., the

"20" in "2011")

inp%byy

Last 2 digits of the year for the initial time of the forecast (e.g., the "11"
in "2011")

inp%bmm 2-digit month (01, 02, etc) for the initial time of the forecast

inp%bdd 2-digit day for the initial time of the forecast

inp%bhh 2-digit hour for the initial time of the forecast

 115

inp%model Model ID number as defined by the user in the script. This is used in
subroutine getdata to define what the GRIB IDs are for surface wind
levels. Create a unique number in the script for your model and make
sure you have the corresponding IDs set up for it in subroutine getdata.
For HWRF use 17.

The Model ID numbers for other models are listed below:

(1) GFS, (2) MRF, (3) UKMET, (4) ECMWF,

 (5) NGM, (6) NAM, (7) NOGAPS, (8) GDAS,

 (10) NCEP Ensemble, (11) ECMWF Ensemble,

 (13) SREF Ensemble, (14) NCEP Ensemble, (15) CMC,

(16) CMC Ensemble, (18) HWRF Ensemble,

(19) HWRF-DAS (HDAS),

(20) Ensemble RELOCATION (21) UKMET hi-res (NHC)

inp%lt_units 'hours' or 'minutes', this defines the lead time units used by the PDS in
your GRIB header

inp%file_seq 'onebig' or 'multi', this specifies if the tracker will process one big input
file or multiple files for each individual lead times. ‘onebig’ is used as
the default method in the community HWRF scripts.

inp%modtyp Type of the model. Either 'global' or 'regional'. For HWRF, choose
‘regional’.

inp%nesttyp Type of the nest grid. Either ‘moveable’ or ‘fixed’. For HWRF, choose
‘moveable’.

fnameinfo%gmodn
ame

Defines the model name in the input files, e.g., 'hwrf'. Only when
inp%file_seq='multi'

fnameinfo%rundesc
r

Describe the model runs in the input files, e.g., 'combined'. Only when
inp%file_seq= 'multi'

fnameinfo%atcfdes
cr

Describe the storm information in the input files, e.g., 'irene09l'. Only
when inp%file_seq='multi'

atcfnum Obsolete; can be set to any integer

atcfname Character model ID that will appear in the ATCF output (e.g., GFSO,
HWRF, AHW, HCOM etc)

atcfymdh 10-digit yyyymmddhh date that will be used in output text track files

 116

Atcffreq Frequency (in centahours) of output for atcfunix.Default value is 600
(six hourly).

trkrinfo%westbd 	 For genesis runs, the western boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%eastbd For genesis runs, the eastern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%northbd For genesis runs, the northern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%southbd For genesis runs, the southern boundary for searching for new storms.
Does not need to match the boundaries of your grid, it can be smaller
than your grid.

trkrinfo%type trkrinfo%type defines the type of tracking to do. A 'tracker' run
functions as the standard TC tracker and tracks only storms from the
TCVitals. 'tcgen' and 'midlat' run in genesis mode and will look for
new storms in addition to tracking from TCVitals. 'tcgen' will look for
all parameters at the various vertical levels, while 'midlat' will only
look for mslp and no checks are performed to differentiate tropical
from non-tropical cyclones.For HWRF, choose 'tracker'.

trkrinfo%mslpthres
h

Threshold for the minimum MSLP gradient (units mb/km) that must be
met in order to continue tracking.

trkrinfo%v850thres
h

Threshold for the minimum azimuthally-average 850 mb cyclonic
tangential wind speed (m/s) that must be exceeded in order to keep
tracking.

trkrinfo%gridtype 'global' or 'regional', this defines the type of domain grid. For HWRF or
other limited area models, choose 'regional'.

trkrinfo%contint This specifies the interval (in Pa) used by subroutine
check_closed_contour to check for a closed contour in the mslp field
when running in genesis mode. Note that check_closed_contour is also
called from the routine that checks for a warm core, but the contour
interval is hard-wired in the executable as 1.0 degree K for that usage.

trkrinfo%out_vit This is only set to 'y' if the tracker is running in genesis mode, and it
tells the tracker to write out a "TCVitals" record for any storms that it
finds at tau = 00h in a forecast.
For HWRF, choose ‘n’.

phaseflag 'y' or 'n', tells the program whether or not to determine the cyclone

 117

thermodynamic phase

phasescheme 'cps', 'vtt', 'both', tells the program which scheme to use for checking the
cyclone phase. 'cps' is Hart's cyclone phase space, 'vtt' is a simple 300-
500 mb warm core check based on Vitart, and 'both' tells the program
to use both schemes. Not used if phaseflag='n'

wcore_depth The contour interval (in deg K) used in determining if a closed contour
exists in the 300-500 mb temperature data, for use with the vtt scheme

structflag 'y' or 'n', tells the program whether or not to determine the cyclone
thermodynamic structure.

Ikeflag 'y' or 'n', tells the program whether or not to calculate the Integrated
Kinetic Energy (IKE) and Storm Surge Damage Potential (SDP).

use_waitfor ‘y’ or ‘n’, for waiting for input files. Use ‘n’ unless for real-time
operational runs

Verb Level of detail printed to terminal. Choose from 0 (no output),1 (error
messages only), 2 (more messages) ,3 (all messages).

OUTPUT:
Two files are output, both are in a modified ATCF format: fort.69; and fort.64.
When the tracker runs in cyclogenesis mode, it produces another ATCF format
file: fort.66. And if the “ikeflag” is set to “y” in the namelist, still another output
file will be created: fort.74.

A sample of the vortex tracker output fort.69 is listed below:

AL, 09, 2011082312, 03, HCOM, 00000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058, 0095, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 00000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0040, 0031, 0055, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 00000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0025, 0016, 0042, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 00600, 208N, 714W, 95, 964, XX, 34, NEQ, 0155, 0100, 0058, 0145, 0, 0, 21
AL, 09, 2011082312, 03, HCOM, 00600, 208N, 714W, 95, 964, XX, 50, NEQ, 0066, 0057, 0037, 0060, 0, 0, 21
AL, 09, 2011082312, 03, HCOM, 00600, 208N, 714W, 95, 964, XX, 64, NEQ, 0046, 0033, 0028, 0042, 0, 0, 21
AL, 09, 2011082312, 03, HCOM, 01200, 208N, 722W, 94, 963, XX, 34, NEQ, 0123, 0096, 0060, 0109, 0, 0, 23
AL, 09, 2011082312, 03, HCOM, 01200, 208N, 722W, 94, 963, XX, 50, NEQ, 0069, 0048, 0049, 0062, 0, 0, 23
AL, 09, 2011082312, 03, HCOM, 01200, 208N, 722W, 94, 963, XX, 64, NEQ, 0045, 0032, 0036, 0046, 0, 0, 23
AL, 09, 2011082312, 03, HCOM, 01800, 214N, 728W, 100, 960, XX, 34, NEQ, 0093, 0082, 0060, 0084, 0, 0, 19
AL, 09, 2011082312, 03, HCOM, 01800, 214N, 728W, 100, 960, XX, 50, NEQ, 0054, 0051, 0042, 0050, 0, 0, 19
AL, 09, 2011082312, 03, HCOM, 01800, 214N, 728W, 100, 960, XX, 64, NEQ, 0040, 0037, 0034, 0037, 0, 0, 19
AL, 09, 2011082312, 03, HCOM, 02400, 218N, 734W, 94, 959, XX, 34, NEQ, 0131, 0097, 0063, 0116, 0, 0, 18
AL, 09, 2011082312, 03, HCOM, 02400, 218N, 734W, 94, 959, XX, 50, NEQ, 0061, 0054, 0043, 0056, 0, 0, 18
AL, 09, 2011082312, 03, HCOM, 02400, 218N, 734W, 94, 959, XX, 64, NEQ, 0040, 0035, 0035, 0039, 0, 0, 18
AL, 09, 2011082312, 03, HCOM, 03000, 225N, 741W, 99, 955, XX, 34, NEQ, 0141, 0106, 0065, 0105, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 03000, 225N, 741W, 99, 955, XX, 50, NEQ, 0069, 0055, 0045, 0057, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 03000, 225N, 741W, 99, 955, XX, 64, NEQ, 0044, 0044, 0036, 0041, 0, 0, 24
AL, 09, 2011082312, 03, HCOM, 03600, 232N, 749W, 109, 952, XX, 34, NEQ, 0135, 0104, 0075, 0103, 0, 0, 18
AL, 09, 2011082312, 03, HCOM, 03600, 232N, 749W, 109, 952, XX, 50, NEQ, 0070, 0066, 0048, 0055, 0, 0, 18
AL, 09, 2011082312, 03, HCOM, 03600, 232N, 749W, 109, 952, XX, 64, NEQ, 0050, 0050, 0038, 0042, 0, 0, 18

 118

Column 1: basin name. "AL" represents Atlantic and “EP” northeast Pacific.
Column 2: ATCF storm ID number. Irene was the 9

th storm in the Atlantic Basin in 2011.
Column 3: model starting time.
Column 4: constant and 03 simply indicates that this record contains model forecast data.
Column 5: model ATCF name.
Column 6: forecast lead time in hours multiplied by 100 (e.g, 00900 represents 9 .00 hr).
Column 7-8: vortex center position (latitude and longitude multiplied by 10).
Column 9: vortex maximum 10-m wind (in kt).
Column 10: vortex minimum MSLP (in hpa).
Column 11: placeholder for character strings that indicate whether the storm is a
depression, tropical storm, hurricane, subtropical storm etc. Currently, that storm type
character string is only used for the observed storm data in the NHC Best Track data set.
Column 12: thresholds wind speed in knots, an identifier that indicates whether this
record contains radii for the 34-, 50- or 64-knot wind thresholds.
Column 13: “NEQ” indicates that the four radii values that follow will begin in the
northeast quadrant and progress clockwise.
Column 14-17: wind radii (in nm) for the threshold winds in each quadrant.
Column 18-19: not used.
Column 20: radius of maximum winds, in nautical miles.

A sample of the vortex tracker output fort.64 is listed below:

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058, 0095, 0, 0, 24, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0040, 0031, 0055, 0, 0, 24, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0025, 0016, 0042, 0, 0, 24, 0, 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 95, 964, XX, 34, NEQ, 0155, 0100, 0058, 0145, 0, 0, 21, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 95, 964, XX, 50, NEQ, 0066, 0057, 0037, 0060, 0, 0, 21, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 95, 964, XX, 64, NEQ, 0046, 0033, 0028, 0042, 0, 0, 21, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 012, 208N, 722W, 94, 963, XX, 34, NEQ, 0123, 0096, 0060, 0109, 0, 0, 23, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 012, 208N, 722W, 94, 963, XX, 50, NEQ, 0069, 0048, 0049, 0062, 0, 0, 23, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

AL, 09, 2011082312, 03, HCOM, 012, 208N, 722W, 94, 963, XX, 64, NEQ, 0045, 0032, 0036, 0046, 0, 0, 23, 0 , 0, , 0, , 0,
0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

Column 1-20: same as fort.69 except that column 6, the forecast lead time, instead of
being a 5-digit integer as in fort.69, is a 3-digit integer.
Column 21-35: space fillers.
Column 36: “THERMO PARAMS,” indicating that thermodynamics parameters will
follow.
Column 37-39: The three cyclone phase space parameters, and all values shown have
been multiplied by a factor of 10. The values are listed below.

(1) Parameter B (left-right thickness asymmetry)
(2) Thermal wind (warm/cold core) value for lower troposphere (900-600 mb)

 119

(3) Thermal wind value for upper troposphere (600-300 mb)
Column 40: Presence of a warm core. In this sample it is “U”, which stands for
“undetermined”, meaning the warm core check was not performed. When the warm core
check is performed, this field will be either ‘Y’ or ‘N’, indicating whether the warm core
is identified or not.
Column 41: Warm core strength x 10 (in degrees). It indicates the value of the contour
interval that was used in performing the check for the warm core in the 300-500 mb
layer.
Column 42-43: Constant strings.

A sample of the vortex tracker output fort.66 is listed below:

TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058,
0095, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0042, 0032,
0054, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0027, 0019,
0041, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 34, NEQ, 0156, 0096, 0059,
0145, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 50, NEQ, 0065, 0056, 0037,
0058, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 64, NEQ, 0047, 0031, 0030,
0042, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 34, NEQ, 0123, 0098, 0059,
0104, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 50, NEQ, 0069, 0053, 0047,
0058, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 64, NEQ, 0044, 0033, 0033,
0044, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694

Column 1: “TG”, the basin id for cyclogenesis (when trkrinfo%type is set to “midlat”,
this id is named “ML”).
Column 2: the number of cyclogenesis the tracker identified.
Column 3: the ID for the cyclogenesis, ${YYYYMMDDHH}_F${FFF}_$Lat_$Lon_FOF
where YYYYMMDDHH, FFF, Lat and Lon are the model initialization time, the forecast
lead time, the latitude and the longitude, respectively, in which the cyclogenesis was first
identified.
Column 4-18: same as Columns 3-17 in fort.64.
Column 19: pressure of last closed isobar (in mb).
Column 20: radius of last closed isobar (nm).
Column 21: radius of maximum wind (nm).
Column 22-24: The cyclone phase space parameters, and all values shown have been
multiplied by a factor of 10. The values are listed below.

(1) Parameter B (left-right thickness asymmetry)
(2) Thermal wind (warm/cold core) value for lower troposphere (900-600 mb)
(3) Thermal wind value for upper troposphere (600-300 mb)

Column 25: Presence of a warm core. In this sample it is “U”, which stands for
“undetermined”, meaning the warm core check is not performed. When the warm core
check is performed, this field will be either ‘Y’ or ‘N’, indicating whether the warm core
is identified or not.
Column 26: storm moving direction (in degrees).
Column 27: storm moving speed (in ms-1).
Column 28: mean 850 hpa vorticity (s-1x10e5).
Column 29: max (gridpoint) 850 hpa vorticity (s-1x10e5).

 120

Column 28: mean 700 hpa vorticity (s-1x10e5).
Column 29: max (gridpoint) 700 hpa vorticity (s-1x10e5).

A sample of the vortex tracker output fort.74 is listed below:

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 91, IKE, 0, 23, 34, 16, 5, 0, 0, 0, 2039N, 7062W
AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 91, IKE, 0, 28, 42, 25, 8, 0, 0, 0, 2081N, 7142W
AL, 09, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 91, IKE, 0, 28, 44, 25, 8, 0, 0, 0, 2088N, 7220W
AL, 09, 2011082312, 03, HCOM, 018, 213N, 728W, 99, 962, XX, 91, IKE, 0, 25, 46, 19, 9, 0, 0, 0, 2131N, 7276W
AL, 09, 2011082312, 03, HCOM, 024, 218N, 733W, 92, 962, XX, 91, IKE, 0, 27, 50, 23, 8, 0, 0, 0, 2179N, 7333W
AL, 09, 2011082312, 03, HCOM, 030, 225N, 741W, 97, 959, XX, 91, IKE, 0, 28, 51, 26, 9, 0, 0, 0, 2245N, 7415W
AL, 09, 2011082312, 03, HCOM, 036, 231N, 749W, 95, 961, XX, 91, IKE, 0, 29, 51, 27, 11, 0, 0, 0, 2314N, 7488W
AL, 09, 2011082312, 03, HCOM, 042, 239N, 756W, 100, 956, XX, 91, IKE, 0, 29, 54, 28, 11, 0, 0, 0, 2387N, 7562W
AL, 09, 2011082312, 03, HCOM, 048, 248N, 762W, 107, 953, XX, 91, IKE, 0, 30, 58, 30, 14, 0, 0, 0, 2479N, 7621W
AL, 09, 2011082312, 03, HCOM, 054, 258N, 767W, 111, 949, XX, 91, IKE, 0, 32, 62, 34, 16, 0, 0, 0, 2575N, 7668W
AL, 09, 2011082312, 03, HCOM, 060, 267N, 770W, 113, 946, XX, 91, IKE, 0, 33, 65, 38, 18, 0, 0, 0, 2668N, 7696W
AL, 09, 2011082312, 03, HCOM, 066, 277N, 773W, 111, 944, XX, 91, IKE, 0, 34, 67, 40, 21, 0, 0, 0, 2769N, 7731W
AL, 09, 2011082312, 03, HCOM, 072, 286N, 774W, 114, 944, XX, 91, IKE, 0, 35, 68, 42, 23, 0, 0, 0, 2864N, 7742W
AL, 09, 2011082312, 03, HCOM, 078, 296N, 775W, 113, 941, XX, 91, IKE, 0, 35, 73, 43, 22, 0, 0, 0, 2959N, 7753W
AL, 09, 2011082312, 03, HCOM, 084, 304N, 774W, 107, 944, XX, 91, IKE, 0, 35, 74, 43, 22, 0, 0, 0, 3037N, 7742W
AL, 09, 2011082312, 03, HCOM, 090, 312N, 774W, 108, 941, XX, 91, IKE, 0, 36, 77, 46, 23, 0, 0, 0, 3119N, 7745W
AL, 09, 2011082312, 03, HCOM, 096, 320N, 773W, 107, 942, XX, 91, IKE, 0, 37, 79, 51, 26, 0, 0, 0, 3198N, 7728W
AL, 09, 2011082312, 03, HCOM, 102, 328N, 772W, 111, 938, XX, 91, IKE, 0, 38, 78, 53, 28, 0, 0, 0, 3278N, 7719W
AL, 09, 2011082312, 03, HCOM, 108, 336N, 769W, 111, 937, XX, 91, IKE, 0, 37, 76, 51, 30, 0, 0, 0, 3360N, 7690W
AL, 09, 2011082312, 03, HCOM, 114, 347N, 766W, 106, 939, XX, 91, IKE, 0, 35, 68, 43, 21, 0, 0, 0, 3473N, 7664W
AL, 09, 2011082312, 03, HCOM, 120, 361N, 764W, 90, 950, XX, 91, IKE, 0, 32, 57, 35, 10, 0, 0, 0, 3611N, 7642W
AL, 09, 2011082312, 03, HCOM, 126, 375N, 764W, 69, 957, XX, 91, IKE, 0, 27, 42, 24, 2, 0, 0, 0, 3745N, 7637W

Column 1-11: Same as fort.64.
Column 12-13: fixed fields.
Column 14: wind damage potential (wdp) (not computed in this version, therefore is
always zero).
Column 15: storm surge damage potential (SDP) (multiplied by 10).
Column 16-18: IKE, in terajoule, for 10 ms-1, 18 ms-1 and 33 ms-1 winds, respectively.
Column 19-21: IKE for 25-40 ms-1, 41-54 ms-1 and 55 ms-1 winds, currently not
computed, therefore are always zero
Column 22-23: vortex center position (latitude and longitude multiplied by 100).

 USAGE:

hwrf_gettrk.exe < namelist

8.6.2 hwrf_vint.exe
	
Program to interpolate from various pressure levels onto a regularly spaced grid, with
50-hpa vertical level intervals. Each run only processes one lead time. Therefore it is
necessary to use this executable separately for all lead times.

INPUT:
fort.11: GRIB file containing the postprocessed HWRF output that must contain
at least two levels temperature data: 300 and 500 hpa.

 fort.16: text file containing the number of input pressure levels.
 fort.31: index file of fort.11

Namelist: generated by echo “&timein ifcsthour=${fhour} iparm=${gparm}/”
where ${fhour} is the forecast lead time and ${gparm} is the variable to be
processed. For phase space diagnostics, geopotential height (when
phasescheme=’cps’, ${gparm)=7) or temperature (when phasescheme=’vtt’,

 121

${gparm}=11) or both (when phasescheme=’both’) need to be processed.

OUTPUT:
fort.51: GRIB file that contains the temperature data on vertical levels 300, 350,
400, 450 and 500 hpa.

USAGE:
hwrf_vint.exe < namelist

8.6.3 hwrf_tave.exe

Program to vertically average temperature in the 500-300 hpa layer.

INPUT:

 fort.11: GRIB file containing the temperature at least at levels 300, 350, 400, 450
 and 500 hpa. This file can be generated by hwrf_vint.exe
 fort.16: text file containing the number of input pressure levels.
 fort.31: index file of fort.11
 namelist: generated by the command: echo “&timein ifcsthour=${fhour},
 iparm=11/” > ${namelist}

OUTPUT:

 fort.51: GRIB file containing the mean temperature in the 300-500 hpa layer.

 USAGE:
 hwrf_tave.exe	 <	 namelist

8.7 How to Plot the Tracker Output Using ATCF_PLOT

atcf_plot is a set of GrADS scripts that can be used to plot hurricane track files in ATCF
format.

atcf_plot can be found in the directory: gfdl-vortextracker/trk_plot/plottrak.

To use atcf_plot to plot the storm’s track:

 Enter the directory gfdl-vortextracker/trk_plot.
 Run gribmap on the GrADS ctl file plottrak.ctl. gribmap is a GrADS utility

that maps what is in the ctl file with the binary data that it finds inside the
actual GRIB data file. It creates a map (plottrak.ix) that points to the locations
where the requested binary data starts for the different variables and levels.

Create the map file by using the command:

 gribmap -v -i plottrak.ctl

 122

You should see one line in the output that has "MATCH" in the string. Both the
plottrack.ctl and the newly created plottrak.ix map file need to be in the directory where
the script below is run.

 Edit the atcfplot.sh to set the following paths:
1. gradsv2: path to the GrADS executable (for example,
/contrib/grads/bin/gradsc).
2. GADDIR: path to the directory containing the supplemental font and
map files in for GrADS (for example, /contrib/grads/lib).
3. scrdir: path to the working directory (for example,
/home/${USER}/HWRF/src/gfdl-vortextracker/trk_plot/plottrak).
4. plotdir: path to the directory where the plot files will be created (for
example,
/home/${USER}/HWRF/src/gfdlvortextracker/trk_plot/plottrak/tracks).

 Edit atcfplot.gs to define the following paths:
1, rundir: same as scrdir in atcfplot.sh. Note rundir must end with a “/”.

 2. _netdir: same as plotdir in atcfplot.sh. Note netdir must end with a “/”.
 Edit get_mods.sh to define the following paths:

1. rundir: same as scrdir in atcfplot.sh
2. netdir: same as plotdir in atcfplot.sh
3. ndate: path to the script ndate.ksh
4. nhour: path to the script nhour.ksh

 Edit get_verif.sh to define the following paths:
1. rundir: same as scrdir in atcfplot.sh
2. netdir: same as plotdir in atcfplot.sh
3. ndate: path to the script ndate.ksh
4. nhour: path to the script nhour.ksh

 The users need to insert or append their vortex tracker output, fort.64, into
the file a${Basin}${SID}${YYYY}.dat.

 After settting up the paths to the correct locations in your system, run the
script using the command:

atcfplot.sh ${YYYY} ${Basin}

This will start a GUI window and read in ATCF format track files
a${Basin}${SID}${YYYY}.dat in $rundir (${SID} is the storm ID) for storms in year
${YYYY} in the ${Basin} basin.

For example, the user can use the command “atcfplot.sh 2011 al” to plot the track
files aal${SID}2011.dat in the ${rundir} directory.

When the GUI window appears, from the drop down menu, select a storm, start date,
and a model name (“atcfname” in the GFDL vortex tracker namelist), then click the
“Plot” button to plot the track. The plots can be exported to image files by using the
“Main” and then “Print” menu options.

The default tracker namelist is set to use the ATCF model name “HCOM”. If the

 123

user changes this name in the tracker namelist, the ATCF_PLOT GUI will not
recognize the new name. In this case, the user needs to replace an unused atcfname
with the new atcfname. The atcfnames in the GUI can be found by searching in
function “modnames” in file atcfplot.gs. Note all three instances of the unused
atcfname need to be replaced in atcfplot.gs.

For example, if “USER” was employed as the ATCF model name in the users’ GFDL
Vortex Tracker output fort.64, file atcfplot.gs needs to be modified to have the
ATCF_PLOT program GUI interface show a button for the atcfname “USER”. To do
that, open file atcfplot.gs, go to function “modnames”, find an atcfname that will not
be used, for example “HCOM”, and manually replace the string “HCOM” with
“USER”.

Appendix

The following environment variables are defined in
hwrf_utilities/wrapper_scripts/global_vars.ksh

Note variable names in bold are independent variables that need to be explicitly defined
by the user. The remaining variables are defined using these independent variables and
should not be edited.

Variable	 Group	 Variable	 Name	 Description	 	 Example/Default	 	 	
HWRF	 Source	 Paths	 HWRF_SRC_DIR	 Path	 to	 the	 HWRF	 source	 code	 /lfs1/projects/dtc-‐

hurr/timbrown/cc/CC_20120525_01/sorc	
	 HWRF_OUTPUT_DIR	 Path	 to	 the	 HWRF	 output	 	 /lfs1/projects/dtc-‐

hurr/dstark/CC_20120525_01/results	
	 HWRF_DATA_DIR	 Pah	 to	 the	 HWRF	 input	 data	

sets	
/lfs1/projects/dtc-‐hurr/datasets	

	 HWRF_SCRIPTS	 Path	 to	 low-‐level	 scripts	 ${HWRF_UTILITIES_ROOT}/scripts	
Storm	 Info	 START_TIME	 HWRF	 run	 starting	 time	 2011082312	
	 START_TIME_MINUS6	 6	 hr	 before	 HWRF	 run	 starting	

time	
2011082306	

	 STORM_NAME	 Storm	 name	 issued	 by	
National	 Hurricane	 Center	

IRENE	

	 SID	 Storm	 ID	 09L	
	 BASIN	 Storm	 ocean	 basin	 (Al	 or	 EP)	 AL	
	 FCST_LENGTH	 Forecast	 length	 in	 hour	 126	
	 FCST_INTERVAL	 Forecast	 output	 interval	 in	

hour	
6	

HWRF	 Data	 Paths	 GEOG_DATA_PATH	 Path	 to	 geographical	 fix	 data	 /lfs0/projects/WPS/GEOG	
	 GFS_DATA_DIR	 Path	 to	 work	 directory	 of	

ungrib	
${HWRF_OUTPUT_DIR}/${SID}/${START_TIM
E}/ungribprd	

	 GFS_SPECTRAL_DIR	 Path	 to	 the	 GFS	 spectral	 input	
data	 	

${HWRF_DATA_DIR}/GFS/2011//spectral	

	 GFS_GRIDDED_DIR	 Path	 to	 the	 GFS	 GRIB	 input	
data	 	

${HWRF_DATA_DIR}/GFS/2011/gridded	

	 OCEAN_FIXED_DIR	 Path	 to	 the	 ocean	 fix	 data	 ${HWRF_DATA_DIR}/fix/ocean	
	 LOOP_CURRENT_DIR	 Path	 to	 the	 ocean	 loop	 current	

and	 warm/cold	 core	 rings	 data	
${HWRF_DATA_DIR}/Loop_current	

	 TCVITALS	 Path	 to	 the	 TCVitals	 files	 ${HWRF_DATA_DIR}/Tcvitals	
	 CRTM_FIXED_DIR	 Path	 to	 the	 CRTM	 data	 	 ${HWRF_DATA_DIR}/fix/HWRF_v3.4a	

 124

Output	 Paths	
CYCLE_DATA	 Path	 to	 the	 previous	 cycle	

output	 	
${HWRF_OUTPUT_DIR}/${SID}/${START_TIM
E_MINUS6}	

	 DOMAIN_DATA	 Path	 to	 the	 current	 cycle’s	
output	

${HWRF_OUTPUT_DIR}/${SID}/${START_TIM
E}	

Component	 Paths	
WRF_ROOT	 Path	 to	 WRFV3	 source	 	 ${HWRF_SRC_DIR}/WRFV3	

	 WPS_ROOT	 Path	 to	 WPS	 source	 	 ${HWRF_SRC_DIR}/WPSV3	
	 UPP_ROOT	 Path	 to	 UPP	 souce	 	 ${HWRF_SRC_DIR}/UPP	
	 HWRF_UTILITIES_ROOT	 Path	 to	 HWRF-‐utilities	 source	 ${HWRF_SRC_DIR}/hwrf-‐utilities	
	 GSI_ROOT	 Path	 to	 GSI	 source	 	 ${HWRF_SRC_DIR}/GSI	
	 POMTC_ROOT	 Path	 to	 POM-‐TC	 source	 ${HWRF_SRC_DIR}/pomtc	
	 TRACKER_ROOT	 Path	 to	 tracker	 source	 code	 ${HWRF_SRC_DIR}/gfdl-‐vortextracker	
	 COUPLER_ROOT	 Path	 to	 coupler	 source	 code	 ${HWRF_SRC_DIR}/ncep-‐coupler	
Processors	 MPIRUN	 Command	 used	 to	 run	 parallel	

code	 	
mpiexec	

	 IO_FMT	 IO	 format	 (1	 for	 binary,	 2	 for	
NetCDF)	

2	 (Only	 2	 is	 currently	 supported)	

	 GEOGRID_CORES	 Number	 of	 cores	 to	 run	
geogrid	

12	

	 METGRID_CORES	 Number	 of	 cores	 to	 run	
metgrid	

1	

	 GSI_CORES	 Number	 of	 cores	 to	 run	 GSI	 24	
	 REAL_CORES	 Number	 of	 cores	 to	 run	 real	 1	
	 WRF_CORES	 Number	 of	 cores	 to	 run	 WRF	 202	
	 UNI_CORES	 Number	 of	 cores	 to	 run	 UPP	 1	
WRF	 I/O	 Options	 IO_SERVERS	 If	 use	 I/O	 server	 No	
	 IOSRV_GROUPS	 Number	 of	 I/O	 server	 groups	 0	
	 IOSRV_PERGRP	 Number	 of	 I/O	 servers	 per	

group	
0	

Model	 Options	 ATMOS_DOMAINS	 Number	 of	 atmosphere	
domain	 grids	 	

3	 	

	 PREP_HYB	 Logical	 variable	 to	 determine	
the	 use	 of	 GFS	 data	 in	 hybrid	
vertical	 levels	 	

F	 (Only	 F	 is	 currently	 supported)	

	 RUN_PREP_HYBRID	 Same	 as	 above	 F	 (Only	 F	 is	 currently	 supported)	
	 use_extended_eastatl	 Logical	 variable	 to	 determine	

the	 use	 of	 the	 extended	 ocean	
domain	 grid	 when	 the	 storm	 is	
in	 Eastern	 Atlantic	

F	

	 USE_SAT	 Logical	 variable	 to	 determine	
if	 satellite	 radiance	 s	 will	 be	
included	 created	 during	
postprocessing	 	

F	

GSI	 Options	 USE_GSI	 Logical	 variable	 to	 determine	
if	 GSI	 will	 be	 run	

T	

	 OBS_ROOT	 Path	 to	 the	 observational	 data	
for	 GSI	

${HWRF_DATA_DIR}/GFS/2011/obs/${START
_TIME}	

	 PREPBUFR	 Path	 to	 the	 conventional	 	
observational	 data	 in	 prepbufr	
format	

${HWRF_DATA_DIR}/GFS/2011/obs/${START
_TIME}/gfs.${START_TIME}.prepbufr.nr	

	 BK_DIR	 Path	 to	 the	 background	
directory	 for	 GSI	

${HWRF_OUTPUT_DIR}/${SID}/${START_TIM
E}/relocateprd	

	 FIX_ROOT	 Path	 to	 the	 fix	 data	 files	 for	 GSI	 ${HWRF_DATA_DIR}/fix/HWRF_v3.4a	
	 bk_core	 Dynamic	 core	 option	 for	 GSI	 	 NMM	 (Only	 NMM	 is	 supported)	
	 bkcv_option	 Background	 error	 covariance	

option	 for	 GSI	
NAM	 (Only	 NMM	 is	 supported)

Path	 to	 GrADS	 Tools	 GRADS_BIN	 Path	 to	 GrADS	 /home/dtc/grads-‐2.0.1.oga.1/Contents	

	 GADDIR	 Path	 to	 GrADS	 libraries	 /home/dtc/grads-‐2.0.1.oga.1/Classic/data	

	NOAA-GSD-TECH_Memo-Covers_OAR-GSD-42 (1)
	HWRF_v3.4a_Users_Guide

